Applications

Protection of motors against short-circuits and overloads

Tripping threshold on short-circuit
Standard motor power ratings in AC-3, 415 V
Operational current at 415 V
Breaking capacity at 415 V (Icu) to IEC $60947-2$
Door interlock mechanism
Circuit-breaker type
Pages

13 In

Up to 15 kW	Up to 30 kW	37 kW	
$0.1 \ldots 32 \mathrm{~A}$	$9 \ldots . .65 \mathrm{~A}$	$56 \ldots 80 \mathrm{~A}$	
$10 \ldots 100 \mathrm{kA}$	$35 \ldots 100 \mathrm{kA}$	$50 \ldots 100 \mathrm{kA}$	15 kA
Without	With	With	Without
GV2 ME	GV2 P	GV3 P	GV3 ME80
$3 / 47$ and $3 / 48$	$3 / 49$	$3 / 49$	$3 / 49$

	$7.5 \ldots 110 \mathrm{~kW}$
	$12 \ldots 220 \mathrm{~A}$
35 and 36 kA	70 kA
With	
GV7 RE GV7 RS $3 / 49$	

Up to 11 kW
$0.25 . . .23 \mathrm{~A}$
15... 100 kA

With

GV2 RT

$3 / 50$ and $3 / 51$

TeSys protection components
Magnetic motor circuit-breakers

Protection of motors
Magnetic circuit-breakers provide short-circuit protection. They must be combined with thermal overload relays to provide motor overload protection.

Tripping threshold on short-circuit
Standard motor power ratings in AC-3, 415 V
Operational current at 415 V
Breaking capacity at 415 V (Icu) to IEC 60947-2
Door interlock mechanism
Circuit-breaker type

13 In

Up to 15 kW
$0.4 \ldots 32 \mathrm{~A}$
10... 100 kA

With

GV2 LE
$3 / 52$
35... 100 kA

GV2 L

3/53

Up to 30 kW
$25 \ldots 65 \mathrm{~A}$
$50 \ldots 100 \mathrm{kA}$
With
GV3 L

$3 / 53$

37 kW

80 A

35 kA

With

$3 / 53$
6... 14 In
8... 13 In
6.3... 12.5 In
$0.37 \ldots 250 \mathrm{~kW}$
$1.5 . .500 \mathrm{~A}$
25.7 and 150 kA
35.7... 150 kA
45.7... 150 kA

With

Please consult the Schneider Electric catalogue - Low Voltage Distribution

TeSys protection components
 Thermal-magnetic motor circuit-breakers GV2, GV3 and GV7

GV3 P

GV2 P

Presentation

GV2 ME, GV2 P, GV3 ME, GV3 P and GV7 R motor circuit-breakers are 3-pole thermal-magnetic circuit-breakers specifically designed for the control and protection of motors, conforming to standards IEC 60947-2 and IEC 60947-4-1.

Connection

GV2
GV2 ME and GV2 P circuit-breakers are designed for connection by screw clamp terminals.
Circuit-breaker GV2 ME can be supplied with lugs or spring terminal connections. Spring terminal connections ensure secure, permanent and durable clamping that is resistant to harsh environments, vibration and impact and are even more effective when conductors without cable ends are used. Each connection can take two independent conductors.

GV3

GV3 circuit-breakers feature connection by BTR screws (hexagon socket head), tightened using a $n^{\circ} 4$ Allen key.
This type of connection uses the EverLink® system with creep compensation (1) (Schneider Electric patent).
This technique makes it possible to achieve accurate and durable tightening torque, in order to avoid cable creep.

GV3 circuit-breakers are also available with connection by lugs. This type of connection meets the requirements of certain Asian markets and is suitable for applications subject to strong vibration, such as railway transport.

GV7
GV7 circuit-breakers: with connection by screw clamp terminals (for bars and lugs) and by clip-on connectors.

Operation

Control is manual and local when the motor circuit-breaker is used on its own. Control is automatic and remote when it is associated with a contactor.

GV2 ME and GV3 ME80

Pushbutton control.
Energisation is controlled manually by operating the Start button "l" 1.
De-energisation is controlled manually by operating the Stop button "O" 2, or automatically by the thermal-magnetic protection elements or by a voltage trip attachment.

GV2 P, GV3 P and GV7 R

■ Control by rotary knob: for GV2 P and GV3 P
■ Control by rocker lever: for GV7 R.

Energisation is controlled manually by moving the knob or rocker lever to position "I" 1. De-energisation is controlled manually by moving the knob or rocker lever to position "O" 2. De-energisation due to a fault automatically places the knob or rocker lever in the "Trip" position 3.
Re-energisation is possible only after having returned the knob or rocker lever to position "O".
(1) Creep: normal crushing phenomenon of copper conductors, that is accentuated over time.
Characteristics:

TeSys protection components Thermal-magnetic motor circuit-breakers GV2, GV3 and GV7

Presentation (continued)

Protection of motors and personnel
Motor protection is provided by the thermal-magnetic protection elements incorporated in the motor circuit-breaker.

The magnetic elements (short-circuit protection) have a non-adjustable tripping threshold, which is equal to 13 times the maximum setting current of the thermal trips.

The thermal elements (overload protection) include automatic compensation for ambient temperature variations.
The rated operational current of the motor is displayed by means of a graduated knob 4. Personnel protection is also provided. All live parts are protected against direct finger contact from the front panel.

The addition of an undervoltage trip allows the circuit-breaker to be de-energised in the event of an undervoltage condition. The user is therefore protected against sudden starting of the machine when normal voltage is restored, since the Start button "I" has to be pressed to restart the motor.

With the addition of a shunt trip, de-energisation of the unit can be remotely controlled.
The operators on both open-mounted and enclosed motor circuit-breakers can be locked in the Stop position "O" by up to 4 padlocks.

Because they are suitable for isolation, these circuit-breakers, in the open position, provide an adequate isolation distance and indicate the actual position of the moving contacts by the position of the operators.

Special features

These motor circuit-breakers are easily installed in any configuration thanks to their universal fixing arrangement: screw fixing or clip-on mounting on symmetrical, asymmetrical or combination rails.

TeSys protection components
Thermal-magnetic motor circuit-breakers

(1) UL 508 type E for GV2 PœoH7
(2) Leave a space of 9 mm between 2 circuit-breakers: either an empty space, or side mounting addon contact blocks. Side by side mounting is possible up to $40^{\circ} \mathrm{C}$.
(3) For operation up to $70^{\circ} \mathrm{C}$, please consult your Regional Sales Office.

Mounting characteristics

Operating position
Without derating, in relation to normal vertical mounting plane (1)

Connection characteristics

Connection to screw clamp terminals or spring terminals										
Bare cables										
Circuit-breaker type			GV2 ME		GV2 P		GV3 P		GV3 ME80	
Connection to screw clamp terminals (2) (Max. number of conductors x c.s.a.)	Solid cable	mm ${ }^{2}$	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
			2×1	2×6	2×1	2×6	2×1	$\begin{aligned} & 1 \times 25 \text { and } \\ & 1 \times 35 \end{aligned}$	1×2.5	1×35
	Flexible cable without cable end	mm^{2}	2×1.5	2×6	2×1.5	2×6	2×1	$\begin{aligned} & 1 \times 25 \text { and } \\ & 1 \times 35 \\ & \hline \end{aligned}$	1×2.5	2×16
	Flexible cable with cable end	mm^{2}	2×1	2×4	2x 1	2×4	2×1	$\begin{array}{\|l\|} \hline 1 \times 25 \text { and } \\ 1 \times 35 \\ \hline \end{array}$	1×2.5	2×16
Tightening torque		N.m	1.7	1.7	1.7	1.7	5	$\begin{array}{\|l\|} \hline 5: 25 \mathrm{~mm}^{2} \\ 8: 35 \mathrm{~mm}^{2} \\ \hline \end{array}$	5	5
Connection to spring terminals Number of conductors x c.s.a.	Solid cable	mm ${ }^{2}$	2×1 (3)	2×6	-	-	-	-	-	-
	Flexible cable without cable end	mm^{2}	2×1.5 (3)	2×4	-	-	-	-	-	-

Connection by bars or lugs							
Bars or lugs							$\varnothing 6$
Circuit-breaker type			GV2 ME・ャ6	GV3 P••6	$\begin{aligned} & \text { GV7 } \\ & \text { R॰20...R•100 } \end{aligned}$	GV7 R•150	GV7 R•220
Pitch	Without spreaders	mm	13.5	17.5	35	35	35
	With spreaders	mm	-	-	45	45	45
Bars or cables with lugs	e	mm	$\leqslant 6$				
	L	mm	$\leqslant 9.5$	$\leqslant 13.5$	$\leqslant 25$	$\leqslant 25$	$\leqslant 25$
	L'	mm	$\leqslant 9.5$	$\leqslant 16.5$	-	-	-
	d	mm	$\leqslant 10$				
Screws	Tightening torque	N.m	M4	M6	M6	M8	M8
			1.7	6	10	15	15
Bare cables (copper or aluminium) with connectors	Height (h)	mm	-	-	20	20	20
	C.s.a.	mm^{2}	-	-	1.5... 95	1.5... 95	1.5... 185
	Tightening torque	N.m	-	-	15	15	15

(1) When mounting on a vertical rail, fit a stop to prevent any slippage.
(2) For motor circuit-breakers GV3 P: BTR hexagon socket head screws, EverLink ${ }^{\circledR}$ system. Require use of an insulated Allen key, in compliance with local electrical wiring regulations. (3) For cross-sections 1 to $1.5 \mathrm{~mm}^{2}$, the use of an LA9 D99 cable end reducer is recommended.

TeSys protection components
Thermal-magnetic motor circuit-breakers
GV2 ME and GV2 P

Breaking capacity of GV2 ME and GV2 P

Circuit-breaker type				GV2 ME									GV2 P								
				$\begin{array}{\|l\|} \hline 01 \\ \text { to } \\ 06 \\ \hline \end{array}$	07	08	10	14	16	20	$\begin{array}{\|l\|} \hline 21 \\ \& \\ 22 \end{array}$	32	$\begin{array}{\|l\|} \hline 01 \\ \text { to } \\ 06 \\ \hline \end{array}$	07	08	10	14	16	20	$\begin{array}{\|l\|} \hline 21 \\ \& \\ 22 \end{array}$	32
Rating			A	$\begin{array}{\|l\|} \hline 0.1 \\ \text { to } \\ 1.6 \\ \hline \end{array}$	2.5	4	6.3	10	14	18	$\begin{array}{\|l\|} \hline 23 \\ \& \\ 25 \end{array}$	32	$\begin{aligned} & 0.1 \\ & \text { to } \\ & 1.6 \end{aligned}$	2.5	4	6.3	10	14	18	$\begin{array}{\|l} \hline 23 \\ \& \\ 25 \end{array}$	32
Breaking capacity conforming to IEC 60947-2	230/240 V	Icu	kA	*	\star	\star	\star	\star	*	\star	50	50	*	\star	*	\star	\star	\star	*	*	\star
		Ics \% (1)		*	\star	\star	\star	*	\star	\star	100	100	\star	\star	*	*	\star	\star	\star	\star	\star
	$400 / 415 \mathrm{~V}$	Icu	kA	*	\star	\star	*	\star	15	15	15	10	*	\star	\star	*	\star	\star	50	50	50
		Ics \% (1)		*	\star	\star	\star	\star	50	50	40	50	*	\star	*	\star	\star	\star	50	50	50
	440 V	Icu	kA	\star	\star	*	50	15	8	8	6	6	\star	\star	*	\star	\star	50	20	20	20
		Ics \% (1)		\star	\star	\star	100	100	50	50	50	50	*	\star	\star	\star	\star	75	75	75	75
	500 V	Icu	kA	*	\star	*	50	10	6	6	4	4	*	\star	*	*	50	42	10	10	10
		Ics \% (1)		\star	*	\star	100	100	75	75	75	75	*	\star	\star	\star	100	75	75	75	75
	690 V	Icu	kA	\star	3	3	3	3	3	3	3	3	\star	8	8	6	6	6	4	4	4
		Ics \% (1)		*	75	75	75	75	75	75	75	75	\star	100	100	100	100	100	100	100	100
Associated fuses (if required) if Isc > breaking capacity Icu conforming to IEC 60947-2	230/240 V	aM	A	*	\star	*	*	*	*	*	80	80	*	^	*	^	*	*	\star	*	\star
		gG	A	*	*	\star	\star	*	\star	\star	100	100	*	\star	*	\star	\star	\star	\star	*	\star
	$400 / 415 \mathrm{~V}$	aM	A	*	\star	\star	\star	\star	63	63	80	80	*	\star	*	\star	\star	*	100	100	100
		gG	A	*	*	\star	^	^	80	80	100	100	*	*	*	\star	^	*	125	125	125
	440 V	aM	A	*	*	\star	50	50	50	50	63	63	*	*	\star	*	\star	50	63	80	80
		gG	A	*	*	*	63	63	63	63	80	80	*	*	*	*	\star	63	80	100	100
	500 V	aM	A	*	*	\star	50	50	50	50	50	50	*	\star	*	\star	50	50	50	50	50
		gG	A	^	^	\star	63	63	63	63	63	63	^	^	^	\star	63	63	63	63	63
	690 V	aM	A	*	16	25	32	32	40	40	40	40	*	20	25	40	40	50	50	50	50
		gG	A	\star	20	32	40	40	50	50	50	50	*	25	32	50	50	63	63	63	63
^ > 100 kA . (1) As \% of Icu.																					

Breaking capacity of GV2 ME and GV2 P (used in association with current limiter GV1 L3)

TeSys protection components
Thermal－magnetic motor circuit－breakers GV3 P and GV3 ME80

Breaking capacity of GV3 P and GV3 ME80											
Motor circuit－breaker type				GV3 P							GV3 ME80
				13	18	25	32	40	50	65	
Rating			A	13	18	25	32	40	50	65	80
Breaking capacity conforming to IEC 60947－2	230／240 V	Icu	kA	100	100	100	100	100	100	100	100
		Ics \％（1）		100	100	100	100	100	100	100	100
	$400 / 415 \mathrm{~V}$	Icu	kA	100	100	100	100	50	50	50	15
		Ics \％（1）		100	100	100	100	100	100	100	50
	440 V	Icu	kA	50	50	50	50	50	50	50	10
		Ics \％（1）		100	100	100	100	100	100	100	60
	500 V	Icu	kA	12	12	12	12	12	12	12	4
		Ics \％（1）		50	50	50	50	50	50	50	100
	690 V	Icu	kA	6	6	6	6	6	6	6	2
		Ics \％（1）		50	50	50	50	50	50	50	100
Associated fuses，if required if Isc＞breaking capacity Icu	230／240 V	aM	A	\star	\star	\star	\star	＊	\star	\star	\star
		gG	A	＊	夫	＊	＊	夫	＊	＊	夫
	415 V	aM	A	\star	\star	\star	\star	125	125	125	315
		gG	A	\star	＊	＊	＊	160	160	160	400
	440 V	aM	A	63	80	125	125	125	125	125	315
		gG	A	80	100	160	160	160	160	160	400
	500 V	aM	A	63	63	63	63	80	80	80	200
		gG	A	80	80	80	80	100	100	100	250
	690 V	aM	A	50	50	50	50	63	63	63	200
		gG	A	63	63	63	63	80	80	80	250

\star Fuse not required：breaking capacity Icn＞Isc．
（1）As \％of Icu．

Breaking capacity of GV7 R									
Circuit-breaker type				GV7					
				RE20...RE100	RS20...RS100	RE150	RS150	RE220	RS220
Rating			A	12... 20 to 60... 100		$90 . .150$	90... 150	132... 220	132... 220
Breaking capacity conforming to IEC 60947-2	230/240 V	Icu	kA	85	100	85	100	85	100
		Ics \% (1)		100	100	100	100	100	100
	$400 / 415 \mathrm{~V}$	Icu	kA	36	70	35	70	35	70
		Ics \% (1)		100	100	100	100	100	100
	440 V	Icu	kA	36	65	35	65	35	65
		Ics \% (1)		100	100	100	100	100	100
	500 V	Icu	kA	18	50	30	50	30	50
		Ics \% (1)		100	100	100	100	100	100
	690 V	Icu	kA	8	10	8	10	8	10
		Ics \% (1)		100	100	100	100	100	100
Cable protection against thermal stress in the event of short-circuit (PVC insulated copper cables)	Minimum c.s.a. protected at $40^{\circ} \mathrm{C}$ at Isc max.	$4 \mathrm{~mm}^{2}$		$\leqslant 6 \mathrm{kA}$	$\leqslant 6 \mathrm{kA}$	(2)	(2)	(2)	(2)
		$6 \mathrm{~mm}^{2}$		-	$\leqslant 25 \mathrm{kA}$	(2)	(2)	(2)	(2)
		$10 \ldots 50 \mathrm{~mm}^{2}$		-	-	-	\bullet	\bullet	-
(1) As \% of Icu. - Cable c.s.a. protected. (2) Cable c.s.a. not protected.									

TeSys protection components
 Magnetic motor circuit-breakers GV2 LE and GV2 L

References: pages $3 / 52$ and $3 / 53$	Dimensions: pages 3/83 to $3 / 84$	Schemes: page 3/87
$3 / 14$		Schneider Sclectric

Circuit－breaker type				GV2 LE									GV2 L								
				03 to 06 06	07	08	10	14	16	20	22	32	03 to 05	$\begin{aligned} & \hline 06 \\ & \& \\ & 07 \end{aligned}$	08	10	14	16	20	22	32
Rating			A	$\begin{array}{\|l\|} \hline 0.4 \\ \text { to } \\ 1.6 \end{array}$	2.5	4	6.3	10	14	18	25	32	$\begin{aligned} & 0.4 \\ & \text { to } \\ & 1 \end{aligned}$	$\begin{aligned} & 1.6 \\ & \text { to } \\ & 2.5 \end{aligned}$	4	6.3	10	14	18	25	32
Breaking capacity conforming to IEC 60947－2	230／240 V	Icu	kA	＊	\star	＊	＊	\star	＊	ぇ	50	50	＊	\star	＊	\star	\star	\star	\star	50	50
		Ics \％（1）		＊	ћ	\star	\star	ћ	＊	＊	100	100	\star	＾	\star	＾	＊	\star	\star	100	100
	$400 / 415 \mathrm{~V}$	Icu	kA	\star	\star	\star	\star	\star	15	15	15	10	\star	\star	\star	\star	\star	50	50	50	50
		Ics \％（1）		\star	ћ	＊	＊	\star	50	50	40	50	＊	\star	＊	\star	\star	50	50	50	50
	440 V	Icu	kA	\star	\star	\star	50	15	8	8	6	6	\star	\star	\star	\star	20	20	20	20	20
		Ics \％（1）		\star	ћ	\star	100	100	50	50	50	50	\star	＊	＊	\star	75	75	75	75	75
	500 V	Icu	kA	\star	\star	\star	50	10	6	6	4	4	＊	\star	＊	＊	10	10	10	10	10
		Ics \％（1）		\star	＾	\star	100	100	75	75	75	75	\star	ћ	\star	\star	100	75	75	75	75
	690 V	Icu	kA	\star	3	3	3	3	3	3	3	3	＊	4	4	4	4	4	4	4	4
		Ics \％（1）		\star	75	75	75	75	75	75	75	75	夫	100	100	100	100	100	100	100	100
Associated fuses（if required） if Isc＞breaking capacity lcu conforming to IEC 60947－2 amendment 1	230／240 V	aM	A	\star	＊	＊	＊	＊	＊	＾	80	80	＊	\star	＊	\star	\star	\star	＊	100	100
		gG	A	\star	\star	\star	\star	＊	＊	＊	100	100	＊	\star	\star	\star	\star	\star	\star	125	125
	$400 / 415 \mathrm{~V}$	aM	A	\star	\star	\star	\star	＊	63	63	80	80	\star	\star	\star	\star	＊	80	100	100	100
		gG	A	ћ	＾	＊	＊	＊	80	80	100	100	＾	＊	＊	\star	＊	100	125	125	125
	440 V	aM	A	\star	＊	\star	50	50	50	50	63	63	＊	＊	\star	\star	50	63	80	80	80
		gG	A	\star	＊	＊	63	63	63	63	80	80	\star	\star	\star	\star	63	80	100	100	100
	500 V	aM	A	\star	\star	\star	50	50	50	50	50	50	\star	\star	\star	＊	50	50	50	50	50
		gG	A	\star	＊	\star	63	63	63	63	63	63	夫	\star	＊	＊	63	63	63	63	63
	690 V	aM	A	\star	16	25	32	32	40	40	40	40	＊	20	25	40	40	50	50	50	50
		gG	A	\star	20	32	40	40	50	50	50	50	＊	25	32	50	50	63	63	63	63
Cable protection against thermal stress in the event of short－circuit （PVC insulated copper cables） Minimum c．s．a．protected at $40^{\circ} \mathrm{C}$ and at Isc max．	$1 \mathrm{~mm}^{2}$		kA	－	－	－	$\leqslant 10$	$\leqslant 6$	（2）	（2）	（2）	（2）	\bullet	－	－	$\leqslant 10$	$\leqslant 6$	（2）	（2）	（2）	（2）
	$1.5 \mathrm{~mm}^{2}$		kA	－	－	－	$\leqslant 20$	$\leqslant 10$	（2）	（2）	（2）	（2）	\bullet	－	－	$\leqslant 20$	$\leqslant 10$	（2）	（2）	（2）	（2）
	$2.5 \mathrm{~mm}^{2}$			－	－	－	－	\bullet	\bullet	－	\bullet	（2）	\bullet	－	－	－	－	－	－	－	（2）
	$4 \ldots 6 \mathrm{~mm}^{2}$			－	－	－	－	\bullet	－	－	－	－	－	－	－	－	－	－	－	－	\bullet
＊＞ 100 kA －Cable c．s．a．protected （1）As \％of Icu （2）Cable c．s．a．not protected																					

TeSys protection components
 Magnetic motor circuit-breakers GV3 L and GK3 EF80

References: pages $3 / 52$ and $3 / 53$	Dimensions: pages $3 / 85$ and $3 / 88$	Schemes: page $3 / 87$
$3 / 16$		Schneider SNectric

Breaking capacity of GV3 L and GK3 EF80

Type				GV3 L25	GV3 L32	GV3 L40	GV3 L50	GV3 L65	GK3 EF80
Breaking capacity of the circuit-breaker only or of the circuit-breaker combined with a thermal overload relay	230/240 V	Icu	kA	100	100	100	100	100	50
		Ics \% (1)		100	100	100	100	100	40
	$400 / 415 \mathrm{~V}$	Icu	kA	100	100	50	50	50	35
		Ics \% (1)		100	100	100	100	100	25
	440 V	Icu	kA	50	50	50	50	50	25
		Ics \% (1)		100	100	100	100	100	30
	500 V	Icu	kA	12	12	12	12	12	15
		Ics \% (1)		50	50	50	50	50	30
	690 V	Icu	kA	6	6	6	6	6	6
		Ics \% (1)		50	50	50	50	50	50
Associated fuses (if required) for use with circuit-breaker only or circuit-breaker combined with a thermal overload relay if Isc > breaking capacity	230/240 V	aM	A	*	\star	\star	\star	\star	200
		gG	A	\star	ᄎ	\star	\star	\star	315
	415 V	aM	A	\star	\star	\star	\star	125	200
		gG	A	\star	*	*	\star	160	250
	440 V	aM	A	63	80	125	125	125	160
		gG	A	80	100	160	160	160	250
	500 V	aM	A	63	63	63	63	80	160
		gG	A	80	80	80	80	100	200
	690 V	aM	A	50	50	50	50	63	125
		gG	A	63	63	63	63	80	160
Use of circuit-breakers without fusesCable c.s.a.				Minimum cable length (in metres) limiting the maximum short-circuit current to 35 kA maximum, so enabling breakers GK3 EF80 to be used without fuses					
			mm^{2}	$\leqslant 25$	35	50	70	95	120
Isc (rms) 3-phase, incoming ($\mathrm{Ue}=415 \mathrm{~V}$)		50 kA	m	5	6	8	10	13	15
		45 kA	m	5	5	7	8	10	12
		40 kA	m	5	5	5	5	8	9
		37 kA	m	5	5	5	5	5	5

\star Fuse not required: breaking capacity Icn > Isc.
(1) As \% of $/ c u$

Characteristics
TeSys protection components
Thermal-magnetic motor circuit-breakers GV2, GV3 P and GV3 L

Auxiliary contacts

Type of contacts			Instantaneous auxiliary GV AN, GV AD						Fault signalling GV AD, GV AM11 (1)				Instantaneous auxiliary GV AE		
Rated insulation voltage (Ui) (associated insulation coordination)	Conforming to IEC 60947-1	V	690						690				250 (690 in relation to main circuit)		
	Conforming to CSA C22-2 $\mathrm{n}^{\circ} 14$ and UL 508	V	600						300				300		
Conventional thermal current (Ith)	Conforming to IEC 60947-5-1	A	6						2.5				2.5		
	Conforming to CSA C22-2 n 14 and UL 508	A	5						1				1		
Mechanical durability (C.O.: Close - Open)		c.o.	100000						1000				100000		
Operational power and current conforming to IEC 60947-5-1. a.c. operation			AC-15/100 000 C.O.						AC-14/1000 C.O.				AC-15/100 000 C.O.		
	Rated operational voltage (Ue)	V	48 110 127 	$\begin{array}{\|l\|} \hline 230 \\ 240 \\ \hline \end{array}$	$\begin{array}{\|l} 380 \\ 415 \\ \hline \end{array}$	440	500	690	24	48	$\begin{array}{\|l\|} 110 \\ 127 \\ \hline \end{array}$	$\begin{array}{r} 230 \\ 240 \\ \hline \end{array}$	$24 \quad 48$	$\begin{array}{\|l\|} 110 \\ 127 \\ \hline \end{array}$	$\begin{array}{\|l\|} 230 \\ 240 \end{array}$
	Operational power, normal conditions	VA	300500	720	850	650	500	400	36	48	72	72	4860	120	120
	Occasional breaking and making capacities, abnormal conditions	kVA	3 7	13	15	13	12	9	0.22	0.3	0.45	0.45	0.480 .6	1.27	2.4
	Rated operational current (le)	A	64.5	3.3	2.2	1.5	1	0.6	1.5	1	0.5	0.3	2 l	1	0.5
Operational power and current conforming to IEC 60947-5-1. d.c. operation			DC-13/100 000 C.O.						DC-13/1000 C.0.				DC-13/100 000 C.O.		
	Rated operational voltage (Ue)	v	$24 \mid 48$	60	110	240 (2)		-	24	48	60	-	24 48	60	-
	Operational power, normal conditions	W	140240	180	140	120	-	-	24	15	9	-	2415	9	-
	Occasional breaking and making capacities, abnormal conditions	W	240360	240	210	180	-	-	100	50	50	-	10050	50	-
	Rated operational current (le)	A	6 6	3	1.3	0.5	-	-	1	0.3	0.15	-	10.3	0.15	-
Low power switching reliability of contact			GV AE: Number of failures for " n " million operating cycles$(17 \mathrm{~V}-5 \mathrm{~mA}):=10^{-6}$												
Minimum operational conditions d.c. operation		V	17												
		mA	5												
Short-circuit protection			By GB2 CBee circuit-breaker (rating according to operational current for $\mathrm{Ue} \leqslant 415 \mathrm{~V}$) or by gG fuse 10 A max										GB2 CB06 or gG fuse 10 A max		
Cabling, screw clamp terminals	Number of conductors		1		2										
	Solid cable	mm^{2}	1...2.5		1...2.5										
	Flexible cable without cable end	mm^{2}	0.75...2.5		0.75...2.5										
	Flexible cable with cable end	mm^{2}	0.75...1.5		0.75...1.5										
	Tightening torque	N.m	1.4 max		1.4 max										
Cabling, spring terminal connections	Flexible cable without cable end	mm^{2}	$\begin{aligned} & \hline \text { GV AN only } \\ & 0.75 \ldots 2.5 \\ & \hline \end{aligned}$		0.75...2.5				-				0.75...1.5		

GV2

Power pole	0	1
GV AN20	F	
GV AN11	$\begin{aligned} & \text { F } \\ & \mathrm{O} \end{aligned}$	
GV AE1	F	
GV AE20	F	
GVAE11	F	
GV AD10••	F	
GV AD11••	O	
		Contact open Contact Close

GV3P, GV3L

GV AM11
Change of state following tripping on short-circuit

GV AD10•• and GV AD01••
Change of state following tripping on short-circuit, overload or undervoltage

[^0]
Auxiliary contacts

Type of contacts			Instantaneous auxiliary contacts GV3 A01...A07						Fault signalling contacts GV3 A08 and A09								
Rated insulation voltage (Ui)	Conforming to IEC 60947-1	v	690						690								
	Conforming to CSA C22-2 $\mathrm{n}^{\circ} 14$, UL 508	V	600 (B600)						600 (B600)								
Conventional rated thermal current (lth)	Conforming to IEC 60947-5-1	A	6						6								
	Conforming to CSA C22-2 n ${ }^{\circ}$ 14, UL 508	A	5 (B600)						5 (B600)								
Mechanical durability (C.O.: Close - Open)		C.O.	100000						1000								
Operational power and current conforming to IEC 60947-5-1 a.c. operation	Rated operational voltage (Ue)	V	48 110 127	$\begin{aligned} & 220 \\ & 240 \end{aligned}$	$\begin{aligned} & 380 \\ & 415 \end{aligned}$	440	500	690	48	$\begin{aligned} & 110 \\ & 127 \end{aligned}$	$\begin{aligned} & 220 \\ & 240 \end{aligned}$	$\begin{aligned} & 380 \\ & 415 \end{aligned}$	440	500	690		
	Operational power		AC-11/100 000 C.O.						AC-11/1000 C.O.								
		VA		800	850	700	700	400	240	460	800	850	450	450	200		
	Occasional breaking and making capacities	kVA	$4{ }^{4} 12$	20	20	15	15	10	2.4	8	12	15	12	12	8		
	Operational current (le)	A	6 6 4.5	3.5	2.2	1.5	1.5	0.6	5	3.6	3.5	2.2	1	1	0.3		
Operational power and current conforming to IEC 60947-5-1 d.c. operation	Rated operational voltage (Ue)	V	24 48	60	110	220			24	48	60	110	220				
	Operational power	W	DC-11/100 000 C.O.						DC-11/1000 C.O.								
			180 240 180 140 120						120	120	90	70	60				
	Occasional breaking and making capacities	W	240360	240	210	180			180	180	135	105	90				
	Operational current (le)	A	6 6 5	3	1.3	0.5			5	2.5	1.5	0.7	0.3				
Short-circuit protection			By GB2 CB08 circuit-breaker or gG fuse, 6A max														
Connection	Number of conductors		1		2												
	Solid cable	mm^{2}	1...2.5		1... 2.5												
	Flexible cable without cable end	mm^{2}	0.75...2.5		0.75...2.5												
	Flexible cable with cable end	mm^{2}	0.75...2.5		0.75...1.5												
Contact operation GV3									GV3 A08 and A09 change state following tripping on short-circuit or overload								
GV3A01, A07 ${ }_{\text {F }}^{\text {F }}$																	
GV3A02 ${ }_{\text {c }} \mathrm{F}$																	
GV3 A03	\square																
GV3 A05																	
GV3A06 \quad O	\square																
	Contact open Contact Close																

TeSys protection components
Thermal-magnetic motor circuit-breakers
GV7
Auxiliary contacts

Auxiliary contact characteristics

Type of contacts				GV7 AE1						GV	AB1					
Rated insulation voltage(Ui) (associated insulation coordination)	Conforming to IEC	47-1	v	690						690						
Conventional thermal current (lth)	Conforming to IEC	47-5-1	A	6						6						
Mechanical durability (C.O.: Close - Open)			c.o.	50000						50						
Operational current				AC-12 or	-15.	0000	C.O.			AC	2 or	-15	50000	C.O.		
conforming to IEC 60947-5-1 a.c. operation	Rated operational voltage (Ue)		v	$24 \mid 48$	110	$\begin{aligned} & 230 / \\ & 240 \\ & \hline \end{aligned}$	$\begin{aligned} & 380 / \\ & 415 \\ & \hline \end{aligned}$	440	690	24	48	110	$\begin{array}{\|l} 230 / \\ 240 \\ \hline \end{array}$	$\begin{aligned} & 380 / \\ & 415 \\ & \hline \end{aligned}$	440	690
	Rated operational current (le)	AC-12	A	6 6	6	6	6	6	6	5	5	5	5	5	5	5
		AC-15	A	6 6	5	4	3	3	0.1	5	5	4	3	2.5	2.5	0.1
Operational current				DC-12 or	-14	5000	C.O.			DC	2 or	C-14	50000	C.O.		
conforming to IEC 60947-5-1 d.c. operation	Rated operational voltage (Ue)		v	24	48		110		250	24		48		110		250
	Rated operational current (le)	DC-12	A	2.5	2.5		0.8		0.3	2		2		0.5		-
		DC-14	A	1	0.2		0.5		0.03	0.5		0.1		0.25		-
Minimum operational conditions d.c. operation			V	17						12						
			mA	5						5						
Short-circuit protection				By GB2 CBe॰ circuit-breaker (rating according to operational current for $\mathrm{Ue} \leqslant 415 \mathrm{~V}$) or gG fuse, 10 A max.												
Cabling	Solid cable		mm ${ }^{2}$	1×1.5 conductor						1×1.5 conductor						
	Flexible cable without cable end		mm^{2}	1×1.5 conductor						1×1.5 conductor						
	Flexible cable with cable end		mm^{2}	1×1.5 conductor						1×1.5 conductor						

TeSys protection components
Magnetic motor circuit-breakers
GK3 EF80
Auxiliary contacts

Characteristics of Start-Stop and fault signalling contacts

Rated insulation voltage (Ui)	Conforming to IEC 60947-1	v	500					
Rated operational voltage (Ue)	Conforming to IEC 60947-1	v	500					
Conventional thermal current (Ith)	Conforming to IEC 60947-5-1	A	6					
Operational power and current conforming to IEC 60947-5-1 a.c. operation (C.O.: Close - Open)	Rated operational voltage (Ue)	V	AC-15 48	$\begin{aligned} & \hline 0 \text { C.O. } \\ & 110 / 127 \end{aligned}$	220/240	380/415	440	500
	Operational power	VA	360	500	800	850	700	700
	Occasional breaking and making capacities	VA	4000	12000	20000	20000	15000	15000
	Rated operational current (le)	A	6	4.5	3.5	2.2	1.5	1.5
Operational power and current conforming to IEC 60947-5-1 d.c. operation (C.O.: Close - Open)	Rated operational voltage (Ue)	V	DC-13. 1000 C.O.					220
	Operational power	W	180	240	180	140	120	
	Occasional breaking and making capacities	W	240	280	240	210	180	
	Rated operational current (le)	A	6	5	3	1.3	0.5	
Short-circuit protection	Conforming to IEC 60947-5-1		By GB2 CB08 circuit-breaker or gG fuse, 6A max					
Cabling	Solid cable	mm^{2}	$1 \times 1 \ldots 4$ conductor					
	Flexible cable without cable end	mm^{2}	1×2.5 conductor					
	Flexible cable with cable end	mm^{2}	$1 \times 1 \ldots 2.5$ conductor or $2 \times 1 \ldots 2.5$ conductors					
Tightening torque		N.m	0.8					

TeSys protection components
Thermal-magnetic motor circuit-breakers
Electric trips

Characteristics of electric trips									
Circuit-breaker type			GV2 ME, GV2 P GV3 P, GV3 L		GV2 ME only	GV3 ME80		GV7 R	
Type of trip			GV AU	GV AS	GV AX (1)	GV3 B	GV3 D	GV7 AU	GV7 AS
Rated insulation voltage (Ui)	Conforming to IEC 60947-1	V	690	690	500	690	690	690	690
	Conforming to CSA C22-2 n ${ }^{\circ} 14$, UL 508	V	600	600	-	600 (B600)	600 (B600)	600	600
Operational voltage	Conforming to IEC 60947-1	V	$\begin{aligned} & 0.85 \ldots \\ & 1.1 \text { Un } \end{aligned}$	$\begin{aligned} & 0.7 \ldots \\ & 1.1 \text { Un } \end{aligned}$	$\begin{aligned} & 0.85 \ldots \\ & 1.1 \text { Un } \end{aligned}$	0.8...1.1 Un		$\begin{aligned} & 0.85 \ldots \\ & 1.1 \text { Un } \\ & \hline \end{aligned}$	$\begin{aligned} & 0.7 \ldots \\ & 1.1 \text { Un } \end{aligned}$
Drop-out voltage		V	$\begin{aligned} & 0.7 \ldots \\ & 0.35 \text { Un } \end{aligned}$	$\begin{aligned} & 0.75 \ldots \\ & 0.2 \text { Un } \end{aligned}$	$\begin{aligned} & 0.7 \ldots \\ & 0.35 \text { Un } \end{aligned}$	0.7...0.35 Un		$\begin{aligned} & 0.35 \ldots \\ & 0.7 \text { Ue } \end{aligned}$	$\begin{aligned} & 0.2 \ldots \\ & 0.75 \mathrm{Ue} \end{aligned}$
Inrush consumption	\sim	VA	12	14	12	12		<10	
	=-	W	8	10.5	8	7		< 5	
Sealed consumption	\sim	VA	3.5	5	3.5	7		< 5	
	$\overline{=}$	W	1.1	1.6	1.1	2.5		< 5	
Operating time	Conforming to IEC 60947-1	ms	From the moment the voltage reaches its operational value until opening of the circuit-breaker.						
On-load factor			100 \%			100 \%		100 \%	
Cabling	Number of conductors		2 or 4			1 or 2		1	
	Solid cable	mm ${ }^{2}$	1...2.5			1...2.5		1.5	
	Flexible cable without cable end	mm ${ }^{2}$	0.75...2.5			0.75...2.5		1.5	
	Flexible cable with cable end	mm^{2}	0.75...1.5			0.75...2.5		1	
Tightening torque		N.m	1.4 max			1.2		1.2	
Mechanical durability (C.O.: Close - Open)		c.o.	30000 (GV2 ME and GV2 P) 10000 (GV3 P and GV3 L) 10000 (GV3 P and GV3 L)			50% of the mechanical durability of the circuit-breaker			

(1) Wiring scheme of undervoltage trip for dangerous machines (conforming to INRS) on GV2 ME only, see page $3 / 82$.

Characteristics
TeSys protection components
Thermal-magnetic and magnetic motor circuit-breakers GV2 and GV3

Accessories

Characteristics of 3-pole busbars GV2 Gee» and GV3 G॰64

			GV2 Geャ॰	GV3 Ge64
Rated insulation voltage (Ui)	Conforming to IEC 60947-1	V	690	690
Conventional thermal current (lth)	Conforming to IEC 60439-1	A	63	115
Permissible peak current (I peak)		kA	11	20
Permissible thermal limit ($\mathrm{I}^{2 t}$)		$k^{2} \mathrm{~s}$	104	300
Degree of protection	Conforming to IEC 60529		IP 20	IP 20
Terminal block			Yes	-

Characteristics of terminal blocks GV2 G05 and GV1 G09 (for GV2 ME and GV2 P)

Rated insulation voltage (Ui)	Conforming to IEC 60947-1	V	690
Conventional thermal current (Ith)	Conforming to IEC 60439-1	A	63
Degree of protection Conforming to IEC 60529 Solid cable IP 20 Flexible cable without cable end mm^{2} 1×1.5 to 16 conductor or 2×2.5 to 4 conductors Flexible cable with cable end mm^{2} 1×1.5 to 10 conductor or 2×1.5 to 2 conductors Tightening torque AWG 1 AWG 4 Connector Screw clamp terminals N.m 1.7 2.2			

Characteristics of current limiters (GV2 ME and GV2 P)

Type			GV1 L3		LA9 LB920	
Rated insulation voltage (Ui)	Conforming to IEC 60947-1	V	690		690	
Conventional thermal current (Ith)	Conforming to IEC 60947-1	A	63		63	
Rated operational current (le)		A	32		32	
Operating threshold	rms current	A	1500 (non adjustable threshold)		1000 (non adjustable threshold)	
Connection			1 conductor	2 conductors	1 conductor	2 conductors
	Solid cable	mm^{2}	1.5... 25	1.5... 10	1.5... 25	1.5... 10
	Flexible cable without cable end	mm^{2}	1.5... 25	2.5... 10	1.5... 25	1.5... 10
	Flexible cable with cable end	mm^{2}	1.5... 16	1.5... 4	1.5... 16	1.5... 4
Tightening torque		N.m	2.2			

TeSys protection components
Thermal-magnetic motor circuit-breakers
GV2 ME and GV2 P

References: pages $3 / 48$ and $3 / 49$	Dimensions: pages $3 / 70$ to $3 / 72$	Schemes: page $3 / 76$
$3 / 24$		Schneider
Selectric		

Dynamic stress

I peak $=f($ prospective Isc $)$ at $1.05 \mathrm{Ue}=435 \mathrm{~V}$

1 Maximum peak current
2 24-32A
3 20-25A
4 17-23A
5 13-18A
6 9-14A
7 6-10A
8 4-6.3A
$92.5-4 \mathrm{~A}$
101.6-2.5 A

111-1.6A
12 Limit of rated ultimate breaking capacity on short-circuit of GV2 ME (14, 18, 23 and 25 A ratings)

Thermal limit on short-circuit for GV2 ME
 Thermal limit in $\mathrm{KA}^{2} \mathbf{s}$ in the magnetic operating zone

Sum of $\left.\right|^{2} \mathrm{dt}=\mathrm{f}$ (prospective Isc) at $1.05 \mathrm{Ue}=435 \mathrm{~V}$

1 24-32A
2 20-25A
3 17-23A
4 13-18A
5 9-14A
6 6-10A
7 4-6.3A
8 2.5-4A
$9 \quad 1.6-2.5 \mathrm{~A}$
101-1.6A

Thermal limit in $\mathbf{k A}^{\mathbf{2}} \mathbf{s}$ in the magnetic operating zone

Sum of $I^{2} \mathrm{dt}=\mathrm{f}$ (prospective Isc) at $1.05 \mathrm{Ue}=435 \mathrm{~V}$

1 24-32A
1 20-25A
2 17-23A
3 13-18A
4 9-14A
5 6-10A
6 4-6.3A
7 2.5-4A
8 1.6-2.5A
9 1-1.6A

Thermal-magnetic tripping curves
 Average operating times at $20^{\circ} \mathrm{C}$ related to multiples of the setting current

1a 3 poles from cold state (Ir mini.) : GV3 P
1b 3 poles from cold state (Ir maxi.) : GV3 P
2a 2 poles from cold state (Ir mini.) : GV3 ME80
2b 2 poles from cold state (Ir maxi.) : GV3 ME80
3a 3 poles from hot state (Ir mini.) : GV3 P
3b 3 poles from hot state (Ir maxi.) : GV3 P
4a 3 poles from hot state (Ir mini.) : GV3 ME80
4b 3 poles from hot state (Ir maxi.) : GV3 ME80

References: page $3 / 49$	Dimensions: page 3/73	Schemes: page 3/77
$3 / 28$		Schneider Selectric

I peak $=\mathrm{f}($ prospective Isc) at $1.05 \mathrm{Ue}=435 \mathrm{~V}$
Limited peak current (kA)

1 Maximum peak current
2 56-80 A
3 48-65A
4 37-50A
5 30-40A
6 23-32A
7 17-25A
8 12-18A
9 -13A

```
Maximum thermal limit on short-circuit
Thermal limit in kA's}\mathbf{s}\mathrm{ in the magnetic operating zone
```

Sum of $I^{2} \mathrm{dt}=\mathrm{f}($ prospective Isc) at $1.05 \mathrm{Ue}=435 \mathrm{~V}$

[^1]

References: page $3 / 49$	Dimensions: page 3/73	Schemes: page 3/77
		Schneider
		$3 / 31$

Current limitation on short-circuit (3-phase 400/415 V)

Dynamic stress

I peak $=\mathrm{f}$ (prospective Isc)

For GV7 RS only

GV7 RS220
GV7 RS150
3 GV7 RS100

References: page $3 / 50$	Dimensions: pages $3 / 73$ to $3 / 75$	Schemes: page 3/77
$3 / 32$		Schneider SEVectric

Thermal limit (3-phase 400/415 V)

Thermal limit

Sum of $I^{2} d t=f$ (prospective $\mid s c$)

For GV7 RE only

For GV7 RS only

References: page 3/50	Dimensions: pages 3/73 to $3 / 75$	Schemes: page 3/77
		Schneider
SClectric		

Current limitation on short-circuit (3-phase 690 V) Dynamic stress

I peak $=\mathrm{f}$ (prospective Isc)

For GV7 RS only

GV7 RS220
GV7 RS150 and GV7 RS100

References: page 3/49	Dimensions: pages 3/73 to $3 / 75$	Schemes: page 3/77
$3 / 34$		Schneider SEVectric

Thermal limit on short-circuit (3-phase 690 V)

Thermal limit

Sum of $I^{2} \mathrm{dt}=\mathrm{f}$ (prospective Isc)
For GV7 RE only

1 GV7 RE220
2 GV7 RE150 and GV7 RE100

For GV7 RS only

1 GV7 RS220
2 GV7 RS150 and GV7 RS100

References: page $3 / 49$	Dimensions: pages $3 / 73$ to $3 / 75$
	Schemes: page 3/77

TeSys protection components
Thermal-magnetic motor circuit-breakers
GV2 RT

Thermal-magnetic tripping curves for GV2 RT

[^2]Tripping curves for GV2 L or LE combined with thermal overload relay LRD or LR2 K Average operating times at $20^{\circ} \mathrm{C}$ related to multiples of the setting current

13 poles from cold state
22 poles from cold state
33 poles from hot state

Current limitation on short-circuit for GV2 L and GV2 LE only (3-phase $400 / 415 \mathrm{~V}$) Dynamic stress

1 Maximum peak current
232 A
325 A
418 A
514 A
610 A
76.3 A

84 A
9 2.5A
101.6 A

11 Limit of rated ultimate breaking capacity on short-circuit of GV2 LE (14, 18, 23 and 25 A ratings).

References: pages $3 / 52$ and $3 / 53$	Dimensions: page $3 / 84$	Schemes: page $3 / 85$
$3 / 38$		Schneider
Selectric		

[^3]
Thermal limit on short-circuit for GV2 LE only

Thermal limit in $\mathbf{k A}^{2} \mathbf{s}$ in the magnetic operating zone

Sum of $I^{2} \mathrm{dt}=\mathrm{f}$ (prospective Isc) at $1.05 \mathrm{Ue}=435 \mathrm{~V}$

132 A
225 A
3 18A
414 A
510 A
66.3 A

7 4A
82.5 A

9 1.6A

Thermal limit in $\mathbf{k A}^{2} \mathbf{s}$ in the magnetic operating zone

Sum of $I^{2} d t=f($ prospective Isc) at $1.05 \mathrm{Ue}=435 \mathrm{~V}$

125 A and 32 A
218 A
314 A
410 A
56.3 A

64 A
72.5 A
81.6 A
Thermal limit on short-circuit for GV2 L and GV2 LE + thermal overload relay LRD or LR2 K
Thermal limit in KA^{2} s in the magnetic operating zone

Sum of $I^{2} d t=f($ prospective Isc) at $1.05 \mathrm{Ue}=435 \mathrm{~V}$

$132 \mathrm{~A}(\mathrm{GV} 2 \mathrm{LE} 32)$
225 A and 32 A (GV2 L32)
3 18A
414 A
510 A
66.3 A

74 A
82.5 A

9 1.6 A
10 Limit of rated ultimate breaking capacity on short-circuit of GV2 LE (14, 18, 23 and 25 A ratings).

References: pages $3 / 52$ and $3 / 53$	Dimensions: pages 3/84	Schemes: page 3/85
$3 / 42$		Schneider Selectric

Tripping curves for GV3 L and GK3 EF80 combined with thermal overload relay LRD 33 Average operating time at $20^{\circ} \mathrm{C}$ without prior current flow

13 poles from cold state
22 poles from cold state
33 poles from hot state

A Thermal overload relay protection zone
B GK3 EF80 and GV3 L protection zone

References:	Dimensions:	Schemes:
page 3/53	page 3/84	page 3/85

I peak $=\mathrm{f}($ prospective Isc$)$ at $1.05 \mathrm{Ue}=435 \mathrm{~V}$

[^4]Thermal limit on short-circuit for GV3 L and GK3 EF80
Thermal limit in $\mathbf{A}^{2} \mathbf{s}$
Sum of $I^{2} \mathrm{dt}=\mathrm{f}($ prospective Isc$)$ at $1.05 \mathrm{Ue}=435 \mathrm{~V}$

[^5]

GV2 ME10

Motor circuit-breakers from 0.06 to $15 \mathrm{~kW} / 400 \mathrm{~V}$, with screw clamp terminals												
GV2 ME with pushbutton control												
Standard power ratings of 3-phase motors $50 / 60 \mathrm{~Hz}$ in category AC-3									Setting range of thermal trips (2)	Magnetic tripping current Id ± 20 \%	Reference	Weight
400	415 V		500 V			690 V						
P	Icu	Ics (1)	P	Icu	Ics (1)	P	Icu	Ics (1)				
kW	kA	\%	kW	kA	\%	kW	kA	\%	A	A		kg
-	-	-	-	-	-	-	-	-	0.1..0.16	1.5	GV2 ME01	0.260

$\mathbf{0 . 0 6}$	\star	\star	-	-	-	-	-	-	$0.16 \ldots 0.25$	2.4	GV2 ME02	0.260	
$\mathbf{0 . 0 9}$	\star	\star	-	-	-	-	-	-	$0.25 \ldots 0.40$	5	GV2 ME03	0.260	
$\mathbf{0 . 1 2}$	\star	\star	-	-	-	0.37	\star	\star	$0.40 \ldots 0.63$	8	GV2 ME04	0.260	
$\mathbf{0 . 1 8}$	\star	\star	-	-	-	-	-	-					
$\mathbf{0 . 2 5}$	\star	\star	-	-	-	$\mathbf{0 . 5 5}$	\star	\star	$0.63 \ldots 1$	13	GV2 ME05	0.260	

0.37	\star	\star	0.37	\star	\star	-	-	-	$1 \ldots 16$	22.5	GV2 ME06	0.260	
0.55	\star	\star	0.55	\star	\star	0.75	\star	\star					
	-	-	0.75	\star	\star	1.1	\star	\star					
$\mathbf{0 . 7 5}$	\star	\star	1.1	\star	\star	1.5	3	75	$1.6 \ldots 2.5$	33.5	GV2 ME07	0.260	

1.1	\star	\star	1.5	\star	\star	2.2	3	75	$2.5 \ldots 4$	51	GV2 ME08	0.260	
1.5	\star	\star	$\mathbf{2 . 2}$	\star	\star	3	3	75					
2.2	\star	\star	3	50	100	$\mathbf{4}$	3	75	$4 \ldots 6.3$	78	GV2 ME10	0.260	

$\mathbf{3}$	\star	\star	$\mathbf{4}$	10	100	$\mathbf{5 . 5}$	3	$\mathbf{7 5}$	$6 \ldots 10$	138	GV2 ME14	0.260	
$\mathbf{4}$	\star	\star	$\mathbf{5 . 5}$	10	100	$\mathbf{7 . 5}$	3	75					
$\mathbf{5 . 5}$	$\mathbf{1 5}$	50	$\mathbf{7 . 5}$	6	$\mathbf{7 5}$	$\mathbf{9}$	3	$\mathbf{7 5}$	$9 \ldots 14$	170	GV2 ME16	0.260	
$\mathbf{-}$	-	-	-	-	-	$\mathbf{1 1}$	3	$\mathbf{7 5}$					
$\mathbf{7 . 5}$	$\mathbf{1 5}$	50	$\mathbf{9}$	6	75	$\mathbf{1 5}$	3	75	$13 \ldots 18$	223	GV2 ME20	0.260	

| $\mathbf{9}$ | 15 | 40 | $\mathbf{1 1}$ | 4 | 75 | $\mathbf{1 8 . 5}$ | 3 | 75 | $17 \ldots 23$ | 327 | GV2 ME21 | 0.260 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 1}$ | 15 | 40 | $\mathbf{1 5}$ | 4 | 75 | - | - | - | $20 \ldots 25$ | 327 | GV2 ME22 (3) | 0.260 |

15	10	50	18.5	4	75	22	3	75	$24 \ldots 32$	416	GV2 ME32	0.260

Motor circuit-breakers from 0.06 to $15 \mathrm{~kW} / 400 \mathrm{~V}$, with lugs

To order thermal magnetic circuit-breakers with connection by lugs, add the digit 6 to the end of reference selected above.
Example: GV2 ME08 becomes GV2 ME086.
Thermal magnetic circuit-breakers GV2 ME with built-in auxiliary contact block
With instantaneous auxiliary contact block (composition, see page $3 / 55$):

- GV AE1, add suffix AE1TQ to the motor circuit-breaker reference selected above.

Example: GV2 ME01AE1TQ.

- GV AE11, add suffix AE11TQ to the motor circuit-breaker reference selected above.

Example: GV2 ME01AE11TQ.
■ GV AN11, add suffix AN11TQ to the motor circuit-breaker reference selected above.
Example: GV2 ME01AN11TQ.
These circuit-breakers with built-in contact block are sold in lots of 20 units in a single pack.

[^6]

GV2 ME••3

LA9 D99

Motor circuit-breakers from 0.06 to 11 kW , with spring terminal connections											
GV2 ME (1) with pushbutton control											
Standard power ratings of 3-phase motors $50 / 60 \mathrm{~Hz}$ in category AC-3						Setting range of thermal trips (3)	Magnetic tripping current Id $\pm 20 \%$		Reference	Weight	
$400 / 415 \mathrm{~V}$			500 V								
P	Icu	Ics (2)	P	Icu	Ics (2)						
kW	kA	\%	kW	kA	\%	A	A			kg	
-	-	-	-	-	-	0.1..0.16	1.5		GV2 ME013	0.280	
0.06	\star	\star	-	-	-	0.16...0.25	2.4		GV2 ME023	0.280	
0.09	\star	\star	-	-	-	0.25...0.40	5		GV2 ME033	0.280	
0.12	\star	*	-	-	-	0.40...0.63	8		GV2 ME043	0.280	
0.18	*	*									
0.25	\star	\star	0.37	\star	*	0.63... 1	13		GV2 ME053	0.280	
0.37	\star	*									
0.37	\star	*	0.37	\star	\star	1...1.6	22.5		GV2 ME063	0.280	
0.55	\star	\star	0.55	\star	\star						
			0.75	\star	\star						
0.75	\star	\star	1.1	\star	\star	1.6...2.5	33.5		GV2 ME073	0.280	
1.1	\star	\star	1.5	\star	\star	2.5... 4	51		GV2 ME083	0.280	
1.5	\star	*	2.2	\star	*						
2.2	\star	*	3	50	100	4...6.3	78		GV2 ME103	0.280	
3	\star	\star	4	10	100	6... 10	138		GV2 ME143	0.280	
4	*	\star	5.5	10	100						
5.5	15	50	7.5	6	75	9... 14	170		GV2 ME163	0.280	
7.5	15	50	9	6	75	13... 18	223		GV2 ME203	0.280	
9	15	40	11	4	75	17... 23	327		GV2 ME213	0.260	
11	15	40									
11	15	40	15	4	75	20... 25	327		GV2 ME223	0.260	
Contact blocks											
Description				Mounting		Maximum number	Type of contacts	Sold in lots of	Unit reference	Weight kg	
Instantaneous auxiliary contacts				Front		1	$\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$	10	GV AE113	0.030	
						$\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{O}$	10	GV AE203	0.030		
				LH side			2	$\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$	1	GV AN113	0.060
							$\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{O}$	1	GV AN203	0.060	
Accessory											
Description				Application				Sold in lots of	Unit reference	Weight kg	
Cable end reducer				For connection of conductors from 1 to $1.5 \mathrm{~mm}^{2}$				20	LA9 D99		

(1) For connection of conductors from 1 to $1.5 \mathrm{~mm}^{2}$, the use of an LA9 D99 cable end reducer is recommended.
(2) Maximum rating which can be mounted in enclosures GV2 MC or MP, please consult your Regional Sales Office
(3) The thermal trip setting must be within the range marked on the graduated knob.
$\star>100 \mathrm{kA}$.

GV2 P10

GV3 P65

GV3 P651

Motor circuit-breakers from 0.06 to $30 \mathrm{~kW} / 400 \mathrm{~V}$

GV2 P: control by rotary knob
Screw clamp terminals

-	-	-	-	-	-	-	-	-	0.1..0.16	1.5	GV2 P01	0.350
0.06	*	*	-	-	-	-	-	-	0.16...0.25	2.4	GV2 P02	0.350
0.09	\star	\star	-	-	-	-	-	-	0.25...0.40	5	GV2 P03	0.350
0.12	\star	\star	-	-	-	0.37	*	*	0.40...0.63	8	GV2 P04	0.350
0.18	*	\star	-	-	-	-	-	-				
0.25	\star	\star	-	-	-	0.55	*	\star	0.63... 1	13	GV2 P05	0.350
0.37	\star	\star	0.37	\star	\star	-	-	-	1..1.6	22.5	GV2 P06	0.350
0.55	*	\star	0.55	*	\star	0.75	\star	\star				
0.75	\star	\star	1.1	\star	\star	1.5	8	100	1.6...2.5	33.5	GV2 P07	0.350
1.1	\star	\star	1.5	\star	\star	2.2	8	100	2.5... 4	51	GV2 P08	0.350
2.2	\star	\star	3	\star	\star	4	6	100	4...6.3	78	GV2 P10	0.350
3	\star	\star	5	50	100	5.5	6	100	6... 10	138	GV2 P14	0.350
5.5	*	\star	7.5	42	75	9	6	100	9... 14	170	GV2 P16	0.350
-	-	-	-	-	-	11	6	100				
7.5	50	50	9	10	75	15	4	100	13... 18	223	GV2 P20	0.350
9	50	50	11	10	75	18.5	4	100	17... 23	327	GV2 P21	0.350
11	50	50	15	10	75	-	-	-	20... 25	327	GV2 P22	0.350
15	35	50	18.5	10	75	22	4	100	24... 32	416	GV2 P32	0.350

GV3 P: control by rotary knob

Connection by EverLink® BTR screw connectors (3)

$\mathbf{5 . 5}$	100	100	$\mathbf{7 . 5}$	12	50	$\mathbf{1 1}$	6	50	$9 \ldots .13$	$\mathbf{1 8 2}$	GV3 P13	0.960
$\mathbf{7 . 5}$	100	100	$\mathbf{9}$	12	50	$\mathbf{1 5}$	6	50	$12 \ldots 18$	252	GV3 P18	0.960
$\mathbf{1 1}$	100	100	$\mathbf{1 5}$	12	50	$\mathbf{1 8 . 5}$	6	50	$17 \ldots 25$	350	GV3 P25	0.960
$\mathbf{1 5}$	100	100	$\mathbf{1 8 . 5}$	12	50	$\mathbf{2 2}$	6	50	$23 \ldots 32$	448	GV3 P32	0.960
$\mathbf{1 8 . 5}$	$\mathbf{5 0}$	100	$\mathbf{2 2}$	12	50	$\mathbf{3 7}$	6	50	$30 \ldots 40$	560	GV3 P40	0.960
$\mathbf{2 2}$	50	100	$\mathbf{3 0}$	12	50	$\mathbf{4 5}$	6	50	$37 \ldots 50$	700	GV3 P50	0.960
$\mathbf{3 0}$	$\mathbf{5 0}$	100	$\mathbf{4 5}$	12	50	$\mathbf{5 5}$	6	50	$48 \ldots 65$	910	GV3 P65	0.960

Connection by EverLink® BTR screw connectors, for assembly with a contactor

To assemble a GV3 P13 to P65 circuit-breaker with an LC1 D40A to D65A contactor, it is possible to use the circuit-breaker supplied without downstream EverLink® power terminal block. To order this product, add the digit 1 to the end of the references selected above. Example: GV3 P65 becomes GV3 P651.

Connection by lugs

To order thermal magnetic circuit-breakers with connection by lugs, add the digit 6 to the end of reference selected above. Example: GV3 P18 becomes GV3 P186.
GV3 ME80: pushbutton control, screw clamp terminals

| 37 | 15 | 50 | 45 | 4 | 100 | 55 | 2 | 100 | $56 \ldots 80$ | GV3 ME80 (4) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Motor circuit-breakers up to $50 \mathrm{hp} / 600$ V, UL 508 type E
 GV2 (5)

To obtain a GV2 P motor circuit-breaker, UL 508 type E, combine:
■ a circuit-breaker GV2 P•oH7 (except 32 A),
■ and a "Large Spacing" adapter GV2 GH7.

GV3 (6)

To obtain a motor-circuit-breaker GV3 P, UL 508 type E, use the following with the circuit-breaker:
■ a "Large Spacing" cover GV3 G66,
\square a short-circuit signalling contact GV AM11.
GV3 with connection by lugs (6)
To obtain a motor-circuit-breaker GV3 P, UL 508 type E, with connection by lugs, add the digit $\mathbf{6}$ to the end of reference selected above and use the following with the circuit-breaker:
■ two IP 20 covers LAD 96570,
■ a short-circuit signalling contact GV AM11.

[^7]

Thermal-magnetic circuit-breakers GV7 R with screw clamp terminals											
Control by rocker lever											
Standard power ratings of 3-phase motors $50 / 60 \mathrm{~Hz}$ in category AC-3									Setting range of thermal trips	Reference	Weight
400/415 V			500 V			660/690 V					
P	Icu	Ics (1)	P	Icu	Ics (1)	P	Icu	Ics (1)			
kW	kA	\%	kW	kA	\%	kW	kA	\%	A		kg
7.5	36	100	9	18	100	11	8	100	12... 20	GV7 RE20	2.010
9	36	100	11	18	100	15	8	100			
7.5	70	100	9	50	100	11	10	100	12... 20	GV7 RS20	2.010
9	70	100	11	50	100	15	10	100			
9	36	100	11	18	100	15	8	100	15... 25	GV7 RE25	2.010
11	36	100	15	18	100	18.5	8	100			
9	70	100	11	50	100	15	10	100	15... 25	GV7 RS25	2.010
11	70	100	15	50	100	18.5	10	100			
18.5	36	100	$\begin{aligned} & 18.5 \\ & 22 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	22	8	100	25... 40	GV7 RE40	2.010
18.5	70	100	18.5	50	100	22	10	100	25... 40	GV7 RS40	2.010
22	36	100	30	18	100	30	8	100	30... 50	GV7 RE50	2.015
22	70	100	30	50	100	30	10	100	30... 50	GV7 RS50	2.015
37	36	100	$\begin{aligned} & 45 \\ & 55 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	55	8	100	48... 80	GV7 RE80	2.040
37	70	100	$\begin{aligned} & 45 \\ & 55 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	55	10	100	48... 80	GV7 RS80	2.040
45	36	100	-	18	100	75	8	100	60... 100	GV7 RE100	2.040
45	70	100	-	50	100	75	10	100	60... 100	GV7 RS100	2.040
	3535	100100		30	100	90	8	100	90... 150	GV7 RE150	2.02
55 75			75 90	30	100	110	8	100			
	70	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	7590	50	100	90	10	100	90... 150	GV7 RS150	2.02
55 75				50	100	110	10	100			
90	35	100	110	30	100	160	8	100	132... 220	GV7 RE220	2.350
110	35	100	132	30	100	200	8	100			
			160	30	100						
90	70	100	110	50	100	160	10	100	132... 220	GV7 RS220	2.350
110	70	100	132	50	100	200	10	100			
			160	50	100						

TeSys protection components

Thermal-magnetic circuit-breakers
GV2 RT

For motors with high current peak on starting								
Control by rocker lever								
Standard power ratings of 3-phase motors $50 / 60 \mathrm{~Hz}$ in category AC-3					Setting range of thermal trips (1)	Magnetic tripping current Id ± 20 \%	Reference	Weight
$\begin{aligned} & \hline 220 / \\ & 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 400 / \\ & 415 \mathrm{~V} \end{aligned}$	440 V	500 V	690 V				
kW	kW	kW	kW	kW	A	A		kg
0.06	0.09	$\begin{aligned} & 0.09 \\ & 0.12 \end{aligned}$	-	-	0.25...0.40	8	GV2 RT03	0.350
-	$\begin{aligned} & 0.12 \\ & 0.18 \end{aligned}$	0.18	-	0.37	0.40...0.63	13	GV2 RT04	0.350
0.09	0.25	0.25	0.37	0.55	0.63... 1	22	GV2 RT05	0.350
0.12	0.37	0.37						
0.18	0.37	0.37	0.37	0.75	1..1.6	33	GV2 RT06	0.350
0.25	0.55	0.55	$\begin{aligned} & 0.55 \\ & 0.75 \end{aligned}$	1.1				
0.37	0.75	$\begin{aligned} & 0.75 \\ & 1.1 \end{aligned}$	1.1	1.5	1.6...2.5	51	GV2 RT07	0.350
0.55	1.1	1.5	1.5	2.2	2.5... 4	78	GV2 RT08	0.350
0.75	1.5		2.2	3				
1.1	2.2	$\begin{aligned} & 2.2 \\ & 3 \end{aligned}$	3	4	4...6.3	138	GV2 RT10	0.350
1.5	3	4	4	5.5	6... 10	200	GV2 RT14	0.350
2.2	4		5.5	7.5				
2.2	5.5	5.5	7.5	9	9... 14	280	GV2 RT16	0.350
3		7.5		11				
4	7.5	$\begin{aligned} & 7.5 \\ & 9 \end{aligned}$	9	15	13... 18	400	GV2 RT20	0.350
5.5	$\begin{aligned} & \hline 9 \\ & 11 \end{aligned}$	11	11	18.5	17... 23	400	GV2 RT21	0.350

(1) The thermal trip setting must be within the range marked on the graduated knob.

Characteristics: pages 3/8 to 3/23	Dimensions: page 3/72	Schemes: page 3/76
$3 / 50$		Schneider
Selectric		

| Accessory (2) | | Reference |
| :--- | ---: | ---: | | Weight |
| ---: |
| kg | black handle, blue legend plate

(1) The thermal trip setting must be within the range marked on the graduated knob.
(2) Other accessories such as mounting, cabling and marking accessories are identical to those used for GV2 ME motor circuit-breakers, see page 3/57.

TeSys protection components
Magnetic motor circuit-breakers
GV2 LE

GV2 LE10

Magnetic motor circuit-breakers from 0.06 to 15 kW													
GV2 L: control by rocker lever, connection by screw clamp terminals													
Standard power ratings of 3-phase motors $50 / 60 \mathrm{~Hz}$ in category AC-3									Magnetic protection rating	Tripping current Id $\pm 20 \%$	Use in association with thermal overload relay	Reference	Weight
$400 / 415 \mathrm{~V}$			500 V			690 V							
P	Icu	Ics (1)	P	Icu	Ics (1)	P	Icu	Ics (1)					
kW	kA		kW	kA		kW	kA		A	A			kg
0.06	*	*	-	-	-	-	-	-	0.4	5	LR2 K0302	GV2 LE03	0.330
0.09	\star	*	-	-	-	-	-	-	0.4	5	LR2 K0304	GV2 LE03	0.330
0.12	*	\star	-	-	-	0.37	*	\star	0.63	8	LR2 K0304	GV2 LE04	0.330
0.18	*	\star	-	-	-	-	-	-	0.63	8	LR2 K0305	GV2 LE04	0.330
-	-	-	-	-	-	0.55	\star	\star	1	13	LR2 K0305	GV2 LE05	0.330
0.25	*	\star	-	-	-	-	-	-	1	13	LR2 K0306	GV2 LE05	0.330
-	-	-	-	-	-	0.75	\star	\star	1	13	LR2 K0306	GV2 LE05	0.330
0.37	*	\star	0.37	\star	\star	-	-	-	1	13	LR2 K0306	GV2 LE05	0.330
0.55	*	*	0.55	\star	\star	1.1	\star	\star	1.6	22.5	LR2 K0307	GV2 LE06	0.330
-	-	-	0.75	\star	*	-	-	-	1.6	22.5	LR2 K0307	GV2 LE06	0.330
0.75	夫	\star	1.1	\star	\star	1.5	3	75	2.5	33.5	LR2 K0308	GV2 LE07	0.330
1.1	\star	\star	-	-	-	-	-	-	2.5	33.5	LR2 K0308	GV2 LE07	0.330
1.5	\star	\star	1.5	\star	\star	3	3	75	4	51	LR2 K0310	GV2 LE08	0.330
-	-	-	2.2	\star	\star	-	-	-	4	51	LR2 K0312	GV2 LE08	0.330
2.2	*	*	3	50	100	4	3	75	6.3	78	LR2 K0312	GV2 LE10	0.330
3	*	*	4	10	100	5.5	3	75	10	138	LR2 K0314	GV2 LE14	0.330
4	*	\star	5.5	10	100	-	-	-	10	138	LR2 K0316	GV2 LE14	0.330
-	-	-	-	-	-	7.5	3	75	10	138	LRD 14	GV2 LE14	0.330
-	-	-	-	-	-	9	3	75	14	170	LRD 16	GV2 LE16	0.330
5.5	15	50	7.5	6	75	11	3	75	14	170	LR2 K0321	GV2 LE16	0.330
7.5	15	50	9	6	75	15	3	75	18	223	LRD 21	GV2 LE20	0.330
9	15	40	11	4	75	18.5	3	75	25	327	LRD 22	GV2 LE22	0.330
11	15	40	15	4	75	-	-	-	25	327	LRD 22	GV2 LE22	0.330
15	10	50	18.5	4	75	22	3	75	32	416	LRD 32	GV2 LE32	0.330
$\begin{aligned} & \hline \text { (1) } A s \\ & \star \end{aligned}$	$\begin{aligned} & \% \\ & 100 \end{aligned}$												

GV3 L65

GK3 EF80

Motor circuit-breakers from 0.09 to 30 kW													
GV2 L: Control by rotary knob, connection by screw clamp terminals													
Standard power ratings of 3-phase motors $50 / 60 \mathrm{~Hz}$ in category $\mathrm{AC}-3$									Magnetic protection rating	Tripping current Id $\pm 20 \%$	Use in association with thermal overload relay (class 10A)	Reference	Weight
$400 / 415 \mathrm{~V}$			500 V			690 V							
	Icu	Ics (1)	P	Icu	Ics (1)	P	Icu	Ics (1)					
kW	kA		kW	kA		kW	kA		A	A			kg
0.09	\star	\star	-	-	-	-	-	-	0.4	5	LRD 03	GV2 L03	0.330
0.12	*	*	-	-	-	0.37	\star	*	0.63	8	LRD 04	GV2 L04	0.330
0.18	\star	*	-	-	-	-	-	-	0.63	8	LRD 04	GV2 L04	0.330
-	-	-	-	-	-	0.55	\star	*	1	13	LRD 05	GV2 L05	0.330
0.25	*	*	-	-	-	-	-	-	1	13	LRD 05	GV2 L05	0.330
-	-	-	-	-	-	0.75	\star	*	1	13	LRD 06	GV2 L05	0.330
0.37	*	\star	0.37	*	\star	-	-	-	1	13	LRD 05	GV2 L05	0.330
0.55	*	*	0.55	*	*	1.1	\star	*	1.6	22.5	LRD 06	GV2 L06	0.330
-	-	-	0.75	ᄎ	\star	-	-	-	1.6	22.5	LRD 06	GV2 L06	0.330
0.75	\star	\star	1.1	\star	\star	1.5	4	100	2.5	33.5	LRD 07	GV2 L07	0.330
1.1	-	-	-	-	-	-	-	-			LRD 08	GV2 L08	0.330
1.5	\star	*	1.5	*	\star	3	4	100	4	51	LRD 08	GV2 L08	0.330
-	-	-	-	-	-	-	-	-			LRD 08	GV2 L08	0.330
2.2	\star	\star	3	\star	\star	4	4	100	6.3	78	LRD 10	GV2 L10	0.330
3	\star	*	4	10	100	5.5	4	100	10	138	LRD 12	GV2 L14	0.330
4	-	-	-	-	-	-	-	-			LRD 14	GV2 L14	0.330
-	-	-	-	-	-	7.5	4	100	10	138	LRD 14	GV2 L14	0.330
-	-	-	-	-	-	9	4	100	14	170	LRD 16	GV2 L16	0.330
5.5	50	50	7.5	10	75	11	4	100	14	170	LRD 16	GV2 L16	0.330
7.5	50	50	9	10	75	15	4	100	18	223	LRD 21	GV2 L20	0.330
9	50	50	11	10	75	18.5	4	100	25	327	LRD 22	GV2 L22	0.330
11	50	50	15	10	75	-	-	-	25	327	LRD 22	GV2 L22	0.330
15	35	50	18.5	10	75	22	4	100	32	416	LRD 32	GV2 L32	0.330

Standard power ratings of 3-phase motors $50 / 60 \mathrm{~Hz}$ in category AC-3									Magnetic protection rating	Tripping current Id ± 20 \%	Use in association with thermal overload relay (class 10A)	Reference	Weight
400/4	415 V		500 V			690 V							
P	Icu	Ics (1)	P	Icu	Ics (1)		Icu	Ics (1)					
kW	kA		kW	kA		kW	kA		A	A			kg
11	100	100	15	12	50	18.5	6	50	25	350	LRD 325	GV3 L25	0.960
15	100	100	18.5	12	50	22	6	50	32	448	LRD 332	GV3 L32	0.960
18.5	50	100	22	12	50	37	6	50	40	560	LRD 340	GV3 L40	0.960
22	50	100	30	12	50	45	6	50	50	700	LRD 350	GV3 L50	0.960
30	50	100	37	12	50	55	6	50	65	910	LRD 365	GV3 L65	0.960

Connection by EverLink® BTR screw connectors, for assembly with a contactor

To assemble a GV3 L25 to L65 circuit-breaker with an LC1 D40A to D65A contactor, it is possible to use the circuit-breaker supplied without downstream EverLink® power terminal block. To order this product, add the digit 1 to the end of the references selected above. Example: GV3 L65 becomes GV3 L651.

Connection by lugs

To order these circuit-breakers with connection by lugs, add the digit 6 to the end of reference selected above.
Example: GV3 L32 becomes GV3 L326.

GK3: control by rotary knob, connection by screw clamp terminals

37	35	25	55	15	30	-	-	-	80	1040	LRD 3363	GK3 EF80	0.795

[^8]$\star>100 \mathrm{kA}$.

Characteristics:	Dimensions:	Schemes:
pages $3 / 14$ and $3 / 15$	page $3 / 84$ and $3 / 85$	page $3 / 85$

[^9]

Accessories				
Description	Application	Sold in lots of	Unit reference	Weight kg
Adapter plates	For mounting a GV2 ME or GV2 LE by screw fixing	10	GV2 AF02	0.021
	For mounting a GV2 ME or GV2 P and contactor LC1 D09...D38 with front faces aligned	1	LAD 311	0.040
Height compensation plate	$7,5 \mathrm{~mm}$	10	GV1 F03	0.003
Combination blocks	Between GV2 and contactor LC1 K or LP1 K	10	GV2 AF01	0.020
	Between GV2 and contactor LC1 D09...D38	10	GV2 AF3	0.016
	Between GV2 mounted on LAD 311 and contactor LC1 D09...D38	10	GV2 AF4	0.016
Motor starter adapter plate	With 3-pole connection for mounting a GV2 and a contactor LC1 D09...D25	1	GK2 AF01	0.120
Description	Application	Pitch	Reference	Weight
		mm		kg
Sets of 3-pole 63 A busbars	2 tap-offs	45	GV2 G245	0.036
		54	GV2 G254	0.038
		72	GV2 G272	0.042
	3 tap-offs	45	GV2 G345	0.058
		54	GV2 G354	0.060
	4 tap-offs	45	GV2 G445	0.077
		54	GV2 G454	0.085
		72	GV2 G472	0.094
	5 tap-offs	54	GV2 G554	0.100
Description	Application	Sold in lots of	Unit reference	Weight kg
Protective end cover	For unused busbar outlets	5	GV1 G10	0.005
Terminal block for supply to one or more GV2 G busbar sets	Connection from the top	1	GV1 G09	0.040
	Can be fitted with current limiter GV1 L3 (GV2 ME and GV2 P)	1	GV2 G05	0.115
Cover for terminal block	For mounting in modular panels	10	LA9 E07	0.005
Flexible 3-pole connection for connecting a GV2 to a contactor LC1-D09...D25	Centre distance between mounting rails: $100 . . .120 \mathrm{~mm}$	10	GV1 G02	0.013
Set of connections upstream/downstream	For connecting GV2 ME to a printed circuit board	10	GV2 GA01	0.045
"Large Spacing" adapter UL 508 type E	For GV2 P・ャH7 (except 32 A)	1	GV2 GH7	0.040
Clip-in marker holders (supplied with each circuit-breaker)	For GV2 P, GV2 L, GV2 LE and GV2 RT $(8 \times 22 \mathrm{~mm})$	100	LA9 D92	0.001

Extended Rotary Handle

Allows a circuit-breaker or a starter-controller installed in back of an enclosure to be operated from the front of the enclosure.
A rotary handle can be black or red/yellow, IP54 or IP65. It includes a function for locking the circuit breaker or the starter in the O (Off) or I (On) position (depending of the type of rotary handle) by means of up to 3 padlocks with a shank diameter of 4 to 8 mm . The extended shaft must be adjusted to use in different size enclosures. The IP54 rotary handle is fixed with a nut ($\varnothing 22$) to make easier the assembling. The new Laser Square tool brings the accuracy to align the circuit breaker and the rotary handle.

Padlockable external opera	
Description	
1 Kit handle + mounting system	
2	Universal handle
3	Shaft
4	Bracket
5	Shaft support plate for deep enclosure
6	Retrofit accessory
7	Laser Square accessory

Kit handle + mounting system Description		Item Reference	Weight $\mathbf{k g}$	
For GV2 P/L	Black handle, front plate, with trip status, IP 54	1	GV2 APN01	0.300
	Red handle, front plate, with trip status, IP 54	1	GV2 APN02	0.300
Red handle, front plate, without trip status, IP 65	1	GV2 APN04	0.300	
For GV2 LE	Padlocking in "On" and "Off' position Black handle, blue front plate, IP 54	-	GV2 AP03	0.280

Universal handle					
For GV2 P/L	Black handle, IP		2	GV APB54	0.140
	Red handle, IP 5		2	GV APR54	0.140
	Red handle, IP 6		2	GV APR65	0.140
Shaft					
For GV2 P/L	$\mathrm{L}=315 \mathrm{~mm}$		3	GV APA1	0.110
Bracket					
For GV2 P/L			4	GV APH02	0.300
Shaft support plate for deep enclosure					
For GV2 P/L	Depth $\geqslant 250 \mathrm{~mm}$		5	GV APK11	0.030
Retrofit accessory					
For GV2 P/L			6	GV APP1	0.100
Laser Square accessory					
For GV2 P/L			7	GV APL01	0.160
Sticker		Sold in lots of			
Warning label	For French	10	-	GV APSFR	
	For English	10	-	GV APSEN	
	For German	10	-	GV APSDE	
	For Spanish	10	-	GV APSES	
	For Chinese	10	-	GV APSCN	
	For Portuguese	10	-	GV APSPT	
	For Russian	10	-	GV APSRU	
	For Italian	10	-	GV APSIT	
Padlocking device					
Description				Reference	Weight kg
For all GV2 device	For use with up (padlocks not in	locks, \varnothing		GV2 V03	0.092

Add-on blocks and accessories

[^10]TeSys protection components
Thermal-magnetic motor circuit-breakers
GV3 P and GV3 L
Add-on blocks and accessories

3

Extended Rotary Handle

Allows a circuit-breaker or a starter-controller installed in back of an enclosure to be operated from the front of the enclosure.
A rotary handle can be black or red/yellow, IP54 or IP65. It includes a function for locking the circuit breaker or the starter in the O (Off) or I (On) position (depending of the type of rotary handle) by means of up to 3 padlocks with a shank diameter of 4 to 8 mm . The extended shaft must be adjusted to use in different size enclosures. The IP54 rotary handle is fixed with a nut ($\varnothing 22$) to make easier the assembling. The new Laser Square tool brings the accurency to align the circuit breaker and the rotary handle.

Padlockable external operators for GV3 and GV3L

Description

1 Kit handle + mounting system
2 Universal handle
3 Shaft
4 Bracket
5 Shaft support plate for deep enclosure
6 Retrofit accessory
7 Laser Square accessory

Kit handle + mounting system					
Description			Item Reference		Weight
For GV3 P/L	Black handle, fro	with trip status, IP 54	1	GV3 APN01	0.300
	Red handle, fron	with trip status, IP 54	1	GV3 APN02	0.300
	Red handle, fron	without trip status, IP 65	1	GV3 APN04	0.300
Universal handle					
For GV3 P/L	Black handle, IP		2	GV APB54	0.140
	Red handle, IP 5		2	GV APR54	0.140
	Red handle, IP		2	GV APR65	0.140
Shaft					
For GV3 P/L	$\mathrm{L}=315 \mathrm{~mm}$		3	GV APA1	0.110
Bracket					
For GV3 P/L			4	GV APH03	0.300
Shaft support plate for deep enclosure					
For GV3 P/L	Depth $\geqslant 300 \mathrm{~mm}$		5	GV APK12	0.030
Retrofit accessory					
For GV3 P/L			6	GV APP1	0.100
Laser Square accessory					
For GV3 P/L			7	GV APL01	0.160
Sticker		Sold in lots of			
Warning label	For French	10	-	GV APSFR	
	For English	10	-	GV APSEN	
	For German	10	-	GV APSDE	
	For Spanish	10	-	GV APSES	
	For Chinese	10	-	GV APSCN	
	For Portuguese	10	-	GV APSPT	
	For Russian	10	-	GV APSRU	
	For Italian	10	-	GV APSIT	

TeSys protection components
 Motor circuit-breakers GV3 ME80 and GK3 EF80
 Add-on blocks and accessories

For thermal-magnetic motor circuit-breakers GV3 ME80

Contact blocks				
Description	Type of standard early break contacts		Reference	Weight kg
Instantaneous auxiliary contact blocks (1 per circuit-breaker)	$\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$		GV3 A01	0,060
	N/O + N/O		GV3 A02	0.060
	N/C + N/O + N/O		GV3 A03	0.070
	N/O + N/O + N/O		GV3 A05	0.070
	N/O + N/O + 2 volt-free terminals		GV3 A06	0.070
	N/C + N/O + 2 volt-free terminals		GV3 A07	0.070
Fault signalling contacts (1)	N/C		GV3 A08	0.030
	N/O		GV3 A09	0.030
Electric trips				
Description	Voltages		Reference	Weight
	50 Hz	60 Hz		kg
Udervoltage trips (1)	110, 120, 127 V	120, 127 V	GV3 B11	0.070
	220, 240 V	277 V	GV3 B22	0.070
	$380,415 \mathrm{~V}$	$440 \mathrm{~V}, 480 \mathrm{~V}$	GV3 B38	0.070
Shunt trips (1)	110, 120, 127 V	$120,127 \mathrm{~V}$	GV3 D11	0.070
	220,240 V	277 V	GV3 D22	0.070
	$380,415 \mathrm{~V}$	$440 \mathrm{~V}, 480 \mathrm{~V}$	GV3 D38	0.070
Accessory				
Description		Sold in lots of	Unit reference	Weight kg
Padlocking device,		5	GV1 V02	0.010

(1) 1 voltage trip OR 1 fault signalling contact to be fitted inside the motor circuit-breaker.

Other versions $\quad 24$ to $690 \mathrm{~V}, 50$ or 60 Hz voltage trips for circuit-breakers GV3 ME80.
Please consult your Regional Sales Office.

Add-on auxiliary contacts

These allow remote indication of the circuit-breaker contact states. They can be used for signalling, electrical locking, relaying, etc. They are available in two versions: standard and low level. They include a terminal block and the auxiliary circuits leave the circuit-breaker through a hole provided for this purpose.
They perform the following functions, depending on where they are located in the circuit-breaker:

Location	Function	Application
1 and/or 4	C/O contact	Indicates the position of the circuit-breaker poles
2	Trip indication	Indicates that the circuit-breaker has tripped due to an overload, a short-circuit, a differential fault or the operation of a voltage trip (undervoltage or shunt trip), or of the "push to trip" test button. It resets when the circuit-breaker is reset.
3	Electrical fault indication	Indicates that the circuit-breaker has tripped due to an overload, a short-circuit or a differential fault. It resets when the circuit-breaker is reset.

Type	Reference	Weight kg
Standard	GV7 AE11	0.015
Low level	GV7 AB11	0.015

Fault discrimination devices

These make it possible to:
■ either differentiate a thermal fault from a magnetic fault,
■ or open the contactor only in the event of a thermal fault.

Voltage	Reference	Weight kg
$\sim 24 \ldots . .48$ and $\ldots-24 \ldots 72 \mathrm{~V}$	GV7 AD111 (1)	0.100
$工 110 \ldots 240 \mathrm{~V}$	GV7 AD112 (1)	0.100

Electric trips

These allow the circuit-breaker to be tripped via an electrical control signal.
■ Undervoltage trip GV7 AU
\square Trips the circuit-breaker when the control voltage drops below the tripping threshold, which is between 0.35 and 0.7 times the rated voltage.

- Circuit-breaker closing is only possible if the voltage exceeds 0.85 times the rated voltage.

Circuit-breaker tripping by a GV7 AU trip meets the requirements of IEC 60947-2.
■ Shunt trip GV7 AS
Trips the circuit-breaker when the control voltage rises above 0.7 times the rated voltage.

- Operation (GV7 AU or GV7 AS)
\square When the circuit-breaker has been tripped by a GV7 AU or AS, it must be reset either locally or by remote control. (For remote control, please consult your Regional Sales Office).
- Tripping has priority over manual closing: if a tripping instruction is present, manual action does not result in closing, even temporarily, of the contacts.
- Durability: 50% of the mechanical durability of the circuit-breaker.

Type	Voltage	Reference	Weight kg
Undervoltage trip	$48 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	GV7 AU055 (1)	0.105
	110... $130 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	GV7 AU107 (1)	0.110
	200... $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	GV7 AU207 (1)	0.110
	$380 \ldots 440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	GV7 AU387 (1)	0.105
	$525 \mathrm{~V}, 50 \mathrm{~Hz}$	GV7 AU525 (1)	0.100
Shunt trip	$48 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	GV7 AS055 (1)	0.105
	110... $130 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	GV7 AS107 (1)	0.110
	200... $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	GV7 AS207 (1)	0.110
	$380 \ldots 440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	GV7 AS387 (1)	0.105
	$525 \mathrm{~V}, 50 \mathrm{~Hz}$	GV7 AS525 (1)	0.100

[^11]| Characteristics: | Dimensions: | Schemes: |
| :--- | :--- | :--- |
| pages $3 / 18,3 / 22$ and $3 / 23$ | pages $3 / 75$ to $3 / 77$ | page $3 / 79$ |

GV7 AC03

[^12]Accessories

Cabling accessories					
Description	Application	For use on contactors	Sold in lots of	Unit reference	Weight
					kg
Clip-on connectors for GV7 R	Up to $150 \mathrm{~A}, 1.5 \ldots 95 \mathrm{~mm}^{2}$	-	3	GV7 AC021	0.300
	Up to 220A, 1.5... $185 \mathrm{~mm}^{2}$	-	3	GV7 AC022	0.350
Spreader 3 -pole (1)	To increase the pitch to 45 mm	-	1	GV7 AC03	0.180
Terminal shields IP 405 (1)	Supplied with sealing accessory	-	1	GV7 AC01	0.125
Phase barriers	Safety accessories used when fitting of shields is impossible	-	2	GV7 AC04	0.075
Insulating screens	Ensure insulation between the connections and the backplate	-	2	GV7 AC05	0.075
Kits for combination with contactor(2)	Allowing link between the circuit-breaker and the contactor.	LC1 F115...F185	1	GV7 AC06	0.550
	The cover provides protection against direct finger contact	LC1 F225 and F265	1	GV7 AC07	0.550
		LC1 D115 and D150		GV7 AC08	0.550

Direct rotary handle

Replaces the circuit-breaker front cover; secured by screws. It includes a device for locking the circuit-breaker in the O (Off) position by means of up to 3 padlocks with a shank diameter of 5 to 8 mm (padlocks not included). A conversion accessory allows the direct rotary handle to be mounted on the enclosure door. In this case, the door cannot be opened if the circuit-breaker is in the "ON" position. Circuit-breaker closing is inhibited if the enclosure door is open.

Description	Type	Degree of protection	Reference	Weight kg
Direct rotary handle	Black handle, black legend plate	IP 40	GV7 AP03	0.205
	Red handle, yellow legend plate	IP 40	GV7 AP04	0.205
Adapter plate (3)	Four mounting direct rotary handle on enclosure door	IP 43		GV7 AP05

Extended rotary handle

Allows a circuit-breaker installed in the back of an enclosure to be operated from the front of the enclosure. It comprises:
■ a unit which screws onto the front cover of the circuit-breaker,
■ an assembly (handle and front plate) to be fitted on the enclosure door,
$■$ an extension shaft which must be adjusted (distance between the mounting surface and the door: 185 mm minimum, 600 mm maximum). It includes a device for locking the circuit-breaker in the O (Off) position by means of up to 3 padlocks with a shank diameter of 5 to 8 mm (padlocks not included). This prevents the enclosure door from being opened.

Description	Type	Degree of protection	Reference	Weight $\mathbf{k g}$
Extended rotary handle	Black handle, black legend plate	IP 55	GV7 AP01	0.775
		Red handle, yellow legend plate	IP 55	GV7 AP02

Locking device

Allows circuit-breakers not fitted with a rotary handle to be locked in the O (Off) position by means of up to 3 padlocks with a shank diameter of 5 to 8 mm (padlocks not included).

Description	Application	Reference	Weight kg
Locking device	For circuit-breaker not fitted with a rotary handle	GV7 V01	0.100

[^13]TeSys protection components
Thermal-magnetic motor circuit-breakers
GV2 ME and GV2 P

(1) Maximum

X1 Electrical clearance $=40 \mathrm{~mm}$ for $U e \leqslant 415 \mathrm{~V}$, or 80 mm for $U \mathrm{e}=440 \mathrm{~V}$,
or 120 mm for $\mathrm{Ue}=500$ and 690 V
$X 2=40 \mathrm{~mm}$
GV2 GH7

Mounting,
dimensions

TeSys protection components
Thermal-magnetic motor circuit-breakers GV2 ME and GV2 P

$c=78.5$ on AM1 DP200 (35×7.5)
$c=86$ on AM1 DE200, ED200 (35×15)

GV2 P

(35×15)
On pre-slotted plate AM1 PA

Dimensions

GV2 AF3
Combination GV2 ME + TeSys d contactor Combination GV2 P + TeSys d contactor

GV2 P +	LC1 D09 \ldots..D18	LC1 D25 and D32
\mathbf{b}	176.4	186.8
$\mathbf{c 1}$	100.1	106.4
\mathbf{c}	105.6	111.9
$\mathbf{d 1}$	95	95
\mathbf{d}	100.5	100.5

Dimensions, mounting

TeSys protection components
Thermal-magnetic motor circuit-breakers
GV2 ME and GV2 P

Dimensions (continued)

GV2 AF4 + LAD 311

Combination GV2 ME + TeSys d contactor

Combination GV2 P + TeSys d contactor

GV2 ME + GV1 L3 (current limiter)

$X 1=10 \mathrm{~mm}$ for $\mathrm{Ue}=230 \mathrm{~V}$ or 30 mm for $230 \mathrm{~V}<U \mathrm{e} \leqslant 690 \mathrm{~V}$

Mounting
Mounting of external operator GV2 APN01, GV2 APN02 or GV2 APN04 for motor circuit-breakers GV2 P
Door cut-out

(1) For IP65 only.

Mounting of external operator GV APH02 for motor circuit-breakers GV2 P
Door cut-out

(1) For IP65 only.

Sets of busbars GV2 G445, GV2 G454, GV2 G472, with terminal block GV2 G05

Sets of busbars GV2 Gee» with terminal block GV1 G09

	I
GV2 G245 $(2 \times 45 \mathrm{~mm})$	89
GV2 G254 $(2 \times 54 \mathrm{~mm})$	98
GV2 G272 $(2 \times 72 \mathrm{~mm})$	116

Sets of busbars GV2 G554

	\mathbf{a}			
Number of tap-offs	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
GV2 G445	224	269	314	359
GV2 G454	260	314	368	422
GV2 G472	332	404	476	548

Sets of busbars GV2 G245, GV2 G254, GV2 G272

Sets of busbars GV2 G345 and GV2 G354

	I
GV2 G345 $(3 \times 45 \mathrm{~mm})$	134
GV2 G354 $(3 \times 54 \mathrm{~mm})$	152

Dimensions, mounting

TeSys protection components
Thermal-magnetic motor circuit-breakers
GV2 RT

GV2 RT
Dimensions

Mounting
Mounting of external operator GV2 AP03

On $35 \mathrm{~mm}-$ rail

On panel with adapter plate GV2 AF02

On pre-slotted plate AM1 PA

On rails DZ5 MB

Dimensions, mounting

TeSys protection components
Thermal-magnetic motor circuit-breakers
GV3 P

GV3 P
Dimensions

X1 = Electrical clearance (ISC max)
(1) Blocks GV AN••, GV AD•• and GV AM11
(2) Blocks GV3 AU•• and GV3 ASゃ・

Note: Leave a gap of 9 mm between 2 circuit-breakers: either an empty space or side-mounting add-on contact blocks. Horizontal mounting is possible up to $40^{\circ} \mathrm{C}$

Mounting

Mounting with TeSys contactor LC1 D40A...D65A
(S-shape busbar system GV3 S)

Mounting on rail AM1 DE200 or AM1 ED201

Panel mounting, using M4 screws

Mounting on pre-slotted plate AM1 PA

Note: Leave a space of 9 mm between 2 circuit-breakers: either an empty space or side-mounting add-on contact blocks.
Horizontal mounting is possible up to $40^{\circ} \mathrm{C}$.
Mounting
Mounting of external operator GV3 APN01, GV3 APN02 or GV3 APN04 for motor circuit-breakers GV3 P
Door cut-out

(1) For IP65 only.

Mounting of external operator GV APH03 for motor circuit-breakers GV3 P
Door cut-out

	a		b	
	Mini	Maxi	Mini	Maxi
GV3 APNe•	189	300	-	-
GV3 APNee + GV APK12	300	481		
GV3 APNee + GV APH03	-	-	200	300
GV3 APNee + GV APH03 + GV APK12	-	-	300	492

Dimensions, mounting

TeSys protection components
Thermal-magnetic motor circuit-breakers
GV3 ME80

GV3 ME80
Dimensions

X1 = Electrical clearance (ISC max)
40 mm for $\mathrm{Ue} \leqslant 500 \mathrm{~V}, 50 \mathrm{~mm}$ for $\mathrm{Ue} \leqslant 690 \mathrm{~V}$

Mounting
 Mounting on rail AM1 DE200 or AM1 ED201

Panel mounting, using M4 screws

(1) Blocks GV3 A01...A07.

GV7 R
Dimensions

(1) 126 for GV7 R• 220.

Motor circuit-breakers with terminal shields or phase barriers GV7 R + GV7 AC01 or AC04

(2) Phase barriers: GV7 AC04
(3) Terminal shields: GV7 AC01

Combination of GV7 R and TeSys contactor LC1 F with kit GV7 AC0•

	a	b	c
GV7 R + LC1 F115 or	119	334	181
F150 + GV7 AC06			
GV7 R + LC1 F185 + GV7 AC06	119	338	188
GV7 R + LC1 F225 + GV7 AC07	131	358	188
GV7 R + LC1 F265 + GV7 AC07	131	364	215
Minimum distance between 2 circuit-breakers mounted side by side $=0$			

Dimensions, mounting

TeSys protection components
Thermal-magnetic motor circuit-breakers
GV7 R

GV7 R
Panel mounting Mounting on 2 mounting rails DZ5 MB201

Combination of GV7 R and TeSys contactor LC1 F with kit GV7 AC0•

		E	G
GV7 R + LC1 F115 + GV7 AC06	44	85	120
GV7 R + LC1 F150 + GV7 AC06	46	85	120
GV7 R + LC1 F185 + GV7 AC06	48	85	120
GV7 R + LC1 F225 + GV7 AC07	57	85	120
GV7 R + LC1 F265 + GV7 AC07	60	85	120

Dimensions, mounting

TeSys protection components
Thermal-magnetic motor circuit-breakers
GV7 R

GV7 R
Spreaders GV7 AC03

Direct rotary handle GV7 AP03, GV7 AP04

Connection

Z
Smooth terminals

Connectors

	a
GV7 R•40...R•150	19.5
GV7 R•220	21.5

Flush-mounting

Direct rotary handle GV7 AP03 or GV7 AP04 with conversion accessory GV7 AP05

Front face cut-out
Enclosure viewed from top

Door cut-outs require a minimum distance between the centre of the circuit-breaker and the door hinge point $\Delta \geqslant 100+(h \times 5)$
e = 1 to 3 max
Extended rotary handle GV7 AP01, GV7 AP02

Front mounting add-on contact blocks
Front mounting add-on contact blocks Instantaneous auxiliary contacts and fault signalling contacts GV AED101 GV AED011

Instantaneous auxiliary contacts GVAE1 GVAE11 GV AE20

GV2 P••

Side mounting add-on contact blocks Instantaneous auxiliary contacts and fault signalling contacts

Instantane
GV AN11

GV AN2O

Schemes

Fault signalling contacts GV3 A08

Motor circuit-breakers

GV7 R

Electric trips GV7 AU

Auxiliary contact block modules
GV3 A01 GV3 A02 GV3 A03

Voltage trips

GV3 B

Add-on auxiliary contacts according to their location (1) GV7 AE11, GV7 AB11			
Location 1 C/O contact	Location 2 Trip indication	Location 3 Electrical fault indication	Location 4 C/O contact
$\pm 1 \stackrel{N}{\mp}$		$\underset{\infty}{\infty} \mid$	

A self-adhesive label, supplied with the contact, can be affixed to the front face of the circuit-breaker to allow personalised marking according to the function of the contact or contacts. (1) See pages $3 / 20$ and $3 / 61$.

GV7 AD111, AD112

Recommended application schemes GV7 AD111, AD112

Fault indication
Contactor opening on overload

Associated components
KA1: CAD + LAD 6K10 or RHK
KM1: LC1 D or LC1 F

Dimensions, mounting

TeSys protection components
Magnetic motor circuit-breakers
GV2 L and GV2 LE

7.5 mm height compensation plate GV1 F03

GV2 LE
Dimensions

X1 Electrical clearance $=40 \mathrm{~mm}$ for $U \mathrm{E} \leqslant 690 \mathrm{~V}$.
GV AD, AM, AN, AU, AS GVAE

(1) Maximum

$c=80$ on AM1 DP200
(35×7.5) and 88 on AM1 DE200, ED200 (35×15)

On panel with adapter plate GV2 AF02

On pre-slotted plate AM1 PA

Schneider

Mounting

Mounting of external operator GV2 APN01, GV2 APN02 or GV2 APN04 for motor circuit-breakers GV2 L
Door cut-out

(1) For IP65 only.

Mounting of external operator GV APH02 for motor circuit-breakers GV2 L

Door cut-out

	a	b		
	Mini	Maxi	Mini	Maxi
GV2 APNo•	140	250		
GV2 APNo॰ + GV APH02			151	250
GV2 APN॰॰ + GV APK11	250	434	-	-
$\begin{aligned} & \text { GV2 APN॰॰ + GV APH02 } \\ & + \text { GV APK11 } \\ & \hline \end{aligned}$	-	-	250	445

Mounting of external operator GV2 AP03 for GV2 LE

GV2 L and GV2 LE

Sets of busbars GV2 G445, GV2 G454, GV2 G472, with terminal block GV2 G05

	\mathbf{l}	\mathbf{p}		
GV2 G445 $(4 \times 45 \mathrm{~mm})$	179	45		
GV2 G454 $(4 \times 54 \mathrm{~mm})$	206	54		
GV2 G472 $(4 \times 72 \mathrm{~mm})$	260	72		
			$\mathbf{8}$	$\mathbf{8}$
	\mathbf{a}		314	359
Number of tap-offs	$\mathbf{5}$	$\mathbf{6}$	368	422
GV2 G445	224	269	548	
GV2 G454	260	314	368	
GV2 G472	332	404	476	

Sets of busbars for GV2 L and GV2 LE

Sets of busbars GV2 Geeo with term. block GV1 G09
Sets of busbars GV2 G245, GV2 G254, GV2 GR272

	1
GV2 G245 $(2 \times 45 \mathrm{~mm})$	89
GV2 G254 $(2 \times 54 \mathrm{~mm})$	98
GV2 G272 $(2 \times 72 \mathrm{~mm})$	116

Set of busbars GV2 G554

Sets of busbars GV2 G345 and GV2 G354

	I
GV2 G345 $(3 \times 45 \mathrm{~mm})$	134
GV2 G354 $(3 \times 54 \mathrm{~mm})$	152

GV3 L
Dimensions

X1 = Electrical clearance (ISC max)
40 mm for $\mathrm{Ue} \leqslant 500 \mathrm{~V}, 50 \mathrm{~mm}$ for $U \mathrm{e} \leqslant 690 \mathrm{~V}$

(1) Blocks GV AN••, GV AD•• and GV AM11
(2) Blocks GV3 AU•• and GV3 AS••

Note: Leave a space of 9 mm between 2 circuit-breakers: either an empty space or side-mounting add-on contact blocks.
Side by side mounting is possible up to $40^{\circ} \mathrm{C}$
Mounting
Mounting with Tesys contactor LC1 D40A...D65A and relay LR3 D313... 365

Side by side mounting with Tesys contactor LC1 D40A...D65A

Mounting on rail AM1 DE200 or AM1 ED201

Mounting on pre-slotted plate AM1 PA

Set of busbars GV3 G364

Dimensions, mounting

TeSys protection components
Magnetic motor circuit-breakers
GV3 L and GK3 EF80

GK3 EF80
GK3 EF80 + 4 GK2 AX

Magnetic motor circuit-breakers						
GV2 Le0		GV2 LE*	GV3 Le®			GK3 EF80
						$-Q \int \overbrace{\sim}^{\sim}$
Accessories						
Front mounting add-on contact blocks Instantaneous auxiliary contacts						
GV AE1	GV AE11	GV AE20	GV AED10	d GV AE	011	
$\begin{array}{ll} \stackrel{m}{m} & O R \\ \stackrel{F}{F} & \\ \rightleftharpoons & \end{array}$	$\left.\begin{array}{c\|c} \underset{\sim}{m} & \bar{v} \\ \star & \approx \end{array}\right\}$	$\begin{array}{c\|c} \underset{\sim}{m} & \underset{\sim}{N} \\ \underset{\sim}{*} \end{array}$			N ${ }^{+}$	

Side mounting add-on contact blocks
Instantaneous auxiliary contacts and fault signalling contacts
GV AD0110
GV AD0101
GV AD1010
GV AD1001

Instantane
GV AN11

GV AN20
Short-circuit signalling contacts
GV AM11

Voltage trips
GV AU-ゃ・
GV AS•••

Start-Stop signalling contact blocks GK2 AX10 GK2 AX20 GK2 AX50
$I \quad \underset{\square}{\square} \stackrel{m}{\square} \mid$

IM,
Fault signalling contact blocks
GK2 AX12
GK2 AX22
GK2 AX52
$I>{ }_{\infty}^{\infty}$
$\stackrel{\sim}{\circ}$

[^0]: (1) For application example of fault signalling contact and short-circuit signalling contact, see page 3/82. (2) Add an RC circuit type LA4 D to the load terminals, see page 5/81.

[^1]: 1 56-80 A (GV3 ME80)
 2 48-65 A (GV3 P65)
 3 37-50 A(GV3 P50)
 4 30-40 A (GV3 P40)
 5 23-32A(GV3 P32)
 6 17-25 A (GV3 P25)
 7 12-18A(GV3 P18)
 8 9-13A(GV3 P13)

[^2]: 13 poles from cold state
 22 poles from cold state
 33 poles from hot state

[^3]: 1 Maximum peak current
 2 32A
 3 25A
 418 A
 514 A
 6 10A
 76.3 A

 84 A
 92.5 A
 101.6A

 11 Limit of rated ultimate breaking capacity on short-circuit of GV2 LE (14, 18, 23 and 25 A ratings).

[^4]: 1 Maximum peak current
 2 GK3 EF80
 3 GV3 L65
 4 GV3 L50
 5 GV3 L40
 6 GV3 L32
 7 GV3 L25

[^5]: 1 GK3 EF80
 GV3 L65
 GV3 L50
 GV3 L40
 5 GV3 L32
 6 GV3 L25

[^6]: 1) $A s \%$ of $I c u$.
 (2) The thermal trip setting must be within the range marked on the graduated knob.
 (3) Maximum rating which can be mounted in enclosures GV2 MC or MP, please consult your Regional Sales Office. $\star>100 \mathrm{kA}$.
[^7]: (1) As $\%$ of ccu .
 (2) The thermal trip setting must be within the range marked on the graduated knob.
 (3) BTR screws: hexagon socket head. Require use of an insulated Allen key, in compliance with local wiring regulations.
 (4) Recommended for use in association with a contactor.
 (5) Accessory: see page $3 / 67$.
 (6) Accessories: see page $3 / 57$.
 $\star>100 \mathrm{kA}$.

[^8]: (1) As \% of Icu. Associated current limiter or fuses, where required. See characteristics page 3/17.

[^9]: (1) Mounting of a GV AE contact block or a GV2 AK00 visible isolation block on GV2 P and GV2 L.
 (2) Choice of N/C or N/O contact operation, depending on which way round the reversible block is mounted.
 (3) The GV AD is always mounted next to the circuit-breaker.
 (4) To order an undervoltage trip: replace the dot (\bullet) in the reference with a \boldsymbol{U}, example: GV AU025

 To order a shunt trip: replace the dot (\bullet) in the reference with an S, example: GV ASO25.
 5) Visible isolation of the 3 poles upstream of circuit-breaker GV2 P and GV2 L

 Visible isolation block GV2 AK00 cannot be used with motor circuit-breakers GV2 P32 and GV2 L32 (Ith max =25A).
 (6) $\mathrm{le} \mathrm{Max}=32 \mathrm{~A}$.

[^10]: (1) Choice of N/C or N/O contact operation, depending on which way round the reversible block is mounted.
 (2) Contact blocks available in version with spring terminal connections. Add a figure 3 at the end of the references selected above. Example: GV AED101 becomes GV AED1013
 (3) The GVADe is always mounted next to the circuit-breaker.
 (4) To order an undervoltage trip: replace the dot (\bullet) in the reference with a \mathbf{U}, example: GV AU025 To order a shunt trip: replace the dot (\bullet) in the reference with an S, example: GVAS025.
 (5) Sold in lots of 5.

[^11]: (1) For mounting of a GV7 AD or a GV7 AU orAS.

[^12]: GV7 AC01

[^13]: (1) Terminal shields cannot be used together with spreaders.
 (2) The kit comprises links, a protective shield and a depth adjustable metal bracket for the breaker.
 (3) This conversion accessory makes it impossible to open the door if the device is closed and prevents the device from being closed if the door is open.

